[1] |
董秀军, 邓博, 袁飞云, 等. 航空遥感在地质灾害领域的应用:现状与展望[J]. 武汉大学学报(信息科学版), 2023, 48(12): 1897-1913.
|
|
DONG Xiujun, DENG Bo, YUAN Feiyun, et al. Application of aerial remote sensing in geological hazards: current situation and prospects[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 1897-1913.
|
[2] |
沙洪俊, 袁修孝. 双目影像密集匹配方法的回顾与展望[J]. 武汉大学学报(信息科学版), 2023, 48(11): 1813-1833.
|
|
SHA Hongjun, YUAN Xiuxiao. State-of-the-art binocular image dense matching method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1813-1833.
|
[3] |
HONG Danfeng, ZHANG Bing, LI Hao, et al. Cross-city matters: a multimodal remote sensing benchmark dataset for cross-city semantic segmentation using high-resolution domain adaptation networks[J]. Remote Sensing of Environment, 2023, 299: 113856.
|
[4] |
HONG Danfeng, ZHANG Bing, LI Xuyang, et al. SpectralGPT: spectral remote sensing foundation model[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(8): 5227-5244.
|
[5] |
KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]//Proceedings of 2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 4015-4026.
|
[6] |
SUN Xian, WANG Peijin, LU Wanxuan, et al. RingMo: a remote sensing foundation model with masked image modeling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 3194732.
|
[7] |
刘瑾, 季顺平. 基于深度学习的航空遥感影像密集匹配[J]. 测绘学报, 2019, 48(9): 1141-1150. DOI:.
doi: 10.11947/j.AGCS.2019.20180247
|
|
LIU Jin, JI Shunping. Deep learning based dense matching for aerial remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1141-1150. DOI:.
doi: 10.11947/j.AGCS.2019.20180247
|
[8] |
JI Shunping, LIU Jin, LU Meng. CNN-based dense image matching for aerial remote sensing images[J]. Photogrammetric Engineering & Remote Sensing, 2019, 85(6): 415-424.
|
[9] |
季顺平, 罗冲, 刘瑾. 基于深度学习的立体影像密集匹配方法综述[J]. 武汉大学学报(信息科学版), 2021, 46(2): 193-202.
|
|
JI Shunping, LUO Chong, LIU Jin. A review of dense stereo image matching methods based on deep learning[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 193-202.
|
[10] |
龚健雅, 季顺平. 摄影测量与深度学习[J]. 测绘学报, 2018, 47(6): 693-704. DOI:.
doi: 10.11947/j.AGCS.2018.20170640
|
|
GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 693-704. DOI:.
doi: 10.11947/j.AGCS.2018.20170640
|
[11] |
LAGA H, JOSPIN L V, BOUSSAID F, et al. A survey on deep learning techniques for stereo-based depth estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1738-1764.
|
[12] |
YAO Yao, LUO Zixin, LI Shiwei, et al. MVSNet: depth inference for unstructured multi-view stereo[C]//Proceedings of 2018 European Conference on Computer Vision. Munich: Springer, 2018: 767-783.
|
[13] |
GU Xiaodong, FAN Zhiwen, ZHU Siyu, et al. Cascade cost volume for high-resolution multi-view stereo and stereo matching[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 2495-2504.
|
[14] |
WEI Zizhuang, ZHU Qingtian, MIN Chen, et al. AA-RMVSNet: adaptive aggregation recurrent multi-view stereo network[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 6187-6196.
|
[15] |
CHANG Jiaren, CHANG Peichun, CHEN Yongsheng. Attention-aware feature aggregation for real-time stereo matching on edge devices[C]//Proceedings of 2020 Asian Conference on Computer Vision. Kyoto: Springer, 2020: 365-380.
|
[16] |
LIU Jin, JI Shunping. A novel recurrent encoder-decoder structure for large-scale multi-view stereo reconstruction from an open aerial dataset[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 6050-6059.
|
[17] |
YAN Jianfeng, WEI Zizhuang, YI Hongwei, et al. Dense hybrid recurrent multi-view stereo net with dynamic consistency checking[C]//Proceedings of 2020 European Conference on Computer Vision. Glasgow: Springer, 2020: 674-689.
|
[18] |
YU Dawen, JI Shunping, LIU Jin, et al. Automatic 3D building reconstruction from multi-view aerial images with deep learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171: 155-170.
|
[19] |
LIU Jin, GAO Jian, JI Shunping, et al. Deep learning based multi-view stereo matching and 3D scene reconstruction from oblique aerial images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 204: 42-60.
|
[20] |
GAO Jian, LIU Jin, JI Shunping. Rational polynomial camera model warping for deep learning based satellite multi-view stereo matching[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 6128-6137.
|
[21] |
GAO Jian, LIU Jin, JI Shunping. A general deep learning based framework for 3D reconstruction from multi-view stereo satellite images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 195: 446-461.
|
[22] |
BLEYER M, RHEMANN C, ROTHER C. PatchMatch stereo-stereo matching with slanted support windows[C]//Proceedings of 2011 British Machine Vision Conference. Dundee: British Machine Vision Association, 2011: 1-11.
|
[23] |
GALLIANI S, LASINGER K, SCHINDLER K. Massively parallel multiview stereopsis by surface normal diffusion[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 873-881.
|
[24] |
SCHÖNBERGER J L, ZHENG Enliang, FRAHM J M, et al. Pixelwise view selection for unstructured multi-view stereo[C]//Proceedings of 2016 European Conference on Computer Vision. Amsterdam: Springer Cham, 2016: 501-518.
|
[25] |
XU Qingshan, TAO Wenbing. Multi-scale geometric consistency guided multi-view stereo[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5478-5487.
|
[26] |
LONG Xiaoxiao, LIU Lingjie, THEOBALT C, et al. Occlusion-aware depth estimation with adaptive normal constraints[C]//Proceedings of 2020 European Conference on Computer Vision. Glasgow: Springer, 2020: 640-657.
|
[27] |
KUSUPATI U, CHENG Shuo, CHEN Rui, et al. Normal assisted stereo depth estimation[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 2186-2196.
|
[28] |
ZHAO Wang, LIU Shaohui, WEI Yi, et al. A confidence-based iterative solver of depths and surface normals for deep multi-view stereo[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Visio. Montreal: IEEE, 2021: 6148-6157.
|
[29] |
YANG Zhenheng, WANG Peng, XU Wei, et al. Unsupervised learning of geometry with edge-aware depth-normal consistency[EB/OL]. [2023-10-01]. https://arxiv.org/abs/1711.03665v1.
|
[30] |
KNAPITSCH A, PARK J, ZHOU Qianyi, et al. Tanks and temples[J]. ACM Transactions on Graphics, 2017, 36(4): 1-13.
|
[31] |
AANÆS H, JENSEN R R, VOGIATZIS G, et al. Large-scale data for multiple-view stereopsis[J]. International Journal of Computer Vision, 2016, 120(2): 153-168.
|