测绘学报 ›› 2024, Vol. 53 ›› Issue (10): 2007-2020.doi: 10.11947/j.AGCS.2024.20230245.
• 地图学与地理信息 • 上一篇
罗飘1,2,3,(), 许俊奎1,2,3(), 武芳4, 吕亚坤1,2,3, 庄清文1,2,3
收稿日期:
2023-07-07
发布日期:
2024-11-26
通讯作者:
许俊奎
E-mail:104754200200@henu.edu.cn;10130153@vip.henu.edu.cn
作者简介:
罗飘(1996—),男,硕士生,研究方向为智能地图综合和空间认知。E-mail:104754200200@henu.edu.cn
基金资助:
Piao LUO1,2,3,(), Junkui XU1,2,3(), Fang WU4, Yakun LÜ1,2,3, Qingwen ZHUANG1,2,3
Received:
2023-07-07
Published:
2024-11-26
Contact:
Junkui XU
E-mail:104754200200@henu.edu.cn;10130153@vip.henu.edu.cn
About author:
LUO Piao (1996—), male, postgraduate, majors in intelligent map generalization and spatial cognition. E-mail: 104754200200@henu.edu.cn
Supported by:
摘要:
道路数据具有数量大、变化频率高的特点,是地理空间数据的重要组成部分,道路要素化简也是地图制图综合和空间数据更新的核心技术环节之一。传统方法基于数据点压缩、弯曲识别和现有机器学习算法在道路化简中存在稳定性差、可控性弱,自动化程度低等问题,本文在视觉思维和句法模式相结合的理论基础上,利用深度学习算法的特征挖掘能力将生成式人工神经网络模型引入道路化简领域。首先,将需化简道路数据转化为序列数据,提取其序列特征,以此构造特征数据集;然后,利用门控循环单元(gated recurrent unit,GRU)神经网络构建的Seq2Seq编码模型,将大比例尺道路数据进行嵌入形成高维语义编码,通过对语义编码的解码生成化简后的小比例尺道路数据;最后,根据弧段压缩率、长度变化率、曲线折度、缓冲区限差4个指标评估模型有效性和适用性。通过试验与传统算法对比试验表明,本文模型可应用到道路形状化简中,丰富道路化简方法,促进地图制图综合智能化发展。
中图分类号:
罗飘, 许俊奎, 武芳, 吕亚坤, 庄清文. 一种生成式神经网络的道路简化方法[J]. 测绘学报, 2024, 53(10): 2007-2020.
Piao LUO, Junkui XU, Fang WU, Yakun LÜ, Qingwen ZHUANG. A generative neural network method for road simplification[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 2007-2020.
表6
部分尉氏县道路化简前后数据统计"
ID | 化简前1∶25万 | 化简后1∶100万 | ID | 化简前1∶25万 | 化简后1∶100万 | ID | 化简前1∶25万 | 化简后1∶100万 | ID | 化简前1∶25万 | 化简后1∶100万 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 12 | 4 | 16 | 31 | 7 | 31 | 22 | 20 | 46 | 43 | 21 |
2 | 32 | 14 | 17 | 40 | 18 | 32 | 23 | 13 | 47 | 44 | 22 |
3 | 9 | 8 | 18 | 8 | 7 | 33 | 10 | 7 | 48 | 12 | 4 |
4 | 18 | 10 | 19 | 34 | 26 | 34 | 45 | 24 | 49 | 62 | 19 |
5 | 11 | 10 | 20 | 13 | 9 | 35 | 79 | 73 | 50 | 152 | 63 |
6 | 8 | 3 | 21 | 15 | 12 | 36 | 12 | 7 | 51 | 113 | 35 |
7 | 12 | 7 | 22 | 32 | 29 | 37 | 16 | 4 | 52 | 53 | 25 |
8 | 22 | 16 | 23 | 67 | 35 | 38 | 17 | 16 | 53 | 16 | 12 |
9 | 11 | 6 | 24 | 68 | 29 | 39 | 61 | 23 | 54 | 19 | 10 |
10 | 24 | 21 | 25 | 25 | 20 | 40 | 28 | 26 | 55 | 27 | 8 |
11 | 31 | 14 | 26 | 120 | 44 | 41 | 63 | 43 | 56 | 48 | 21 |
12 | 53 | 20 | 27 | 68 | 34 | 42 | 9 | 7 | 57 | 8 | 6 |
13 | 20 | 12 | 28 | 66 | 40 | 43 | 121 | 89 | 58 | 70 | 31 |
14 | 12 | 10 | 29 | 113 | 96 | 44 | 26 | 12 | |||
15 | 12 | 6 | 30 | 53 | 28 | 45 | 69 | 47 |
[1] |
武芳, 巩现勇, 杜佳威. 地图制图综合回顾与前望[J]. 测绘学报, 2017, 46(10):1645-1664. DO1:.
doi: 10.11947/j.AGCS.2017.20170287 |
WU Fang, GONG Xianyong, DU Jiawei. Overview of the research progress in automated[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1645-1664. DO1:.
doi: 10.11947/j.AGCS.2017.20170287 |
|
[2] | DOUGLAS D H, PEUCKER T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[J]. Cartographica: the International Journal for Geographic Information and Geovisualization, 1973, 10(2):112-122. |
[3] | LI Zhilin, OPENSHAW S. Algorithms for automated line generalization 1 on a natural principle of objective generalization[J]. International Journal of Geographical Information Systems, 1992, 6(5):373-389. |
[4] | TEH C H, CHIN R T. On the detection of dominant points on digital curves[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(8):859-872. |
[5] | 邓敏, 陈杰, 李志林, 等. 曲线简化中节点重要性度量方法比较及垂比弦法的改进[J]. 地理与地理信息科学, 2009, 25(1):40-43. |
DENG Min, CHEN Jie, LI Zhilin, et al. An improved local measure method for the importance of vertices in curve simplification[J]. Geography and Geo-Information Science, 2009, 25(1):40-43. | |
[6] | 朱鲲鹏, 武芳, 王辉连, 等. Li-Openshaw算法的改进与评价[J]. 测绘学报, 2007, 36(4):450-456. |
ZHU Kunpeng, WU Fang, WANG Huilian, et al. Improvement and assessment of Li-Openshaw algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(4):450-456. | |
[7] | 王荣, 闫浩文, 禄小敏. Douglas-Peucker算法全自动化的多尺度空间相似关系方法[J]. 地球信息科学学报, 2021, 23(10):1767-1777. |
WANG Rong, YAN Haowen, LU Xiaomin. Automation of the Douglas-Peucker algorithm based on spatial similarity relations[J]. Journal of Geo-Information Science, 2021, 23(10):1767-1777. | |
[8] | WANG Zeshen, MÜLLER J C. Line generalization based on analysis of shape characteristics[J]. Cartography and Geographic Information Systems, 1998, 25(1):3-15. |
[9] | 毋河海. 数字曲线拐点的自动确定[J]. 武汉大学学报(信息科学版), 2003, 28(3):330-335. |
WU Hehai. Automatic determination of inflection point and its applications[J]. Geomatics and Information Science of Wuhan University, 2003, 28(3):330-335. | |
[10] | 郭庆胜, 黄远林, 章莉萍. 曲线的弯曲识别方法研究[J]. 武汉大学学报(信息科学版), 2008, 33(6):596-599. |
GUO Qingsheng, HUANG Yuanlin, ZHANG Liping. The method of curve bend recognition[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6):596-599. | |
[11] | 艾廷华, 郭仁忠, 刘耀林. 曲线弯曲深度层次结构的二叉树表达[J]. 测绘学报, 2001, 30(4):343-348. |
AI Tinghua, GUO Renzhong, LIU Yaolin. A binary tree representation of curve hierarchical structure in depth[J]. Acta Geodaetica et Cartographic Sinica, 2001, 30(4):343-348. | |
[12] | 翟仁健, 武芳, 朱丽, 等. 曲线形态的结构化表达[J]. 测绘学报, 2009, 38(2):175-182. |
ZHAI Renjian, WU Fang, ZHU Li, et al. Structured representation of curve shape[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(2):175-182. | |
[13] | 杜佳威, 武芳, 李靖涵, 等. 采用多元弯曲组划分的线要素化简方法[J]. 计算机辅助设计与图形学学报, 2017, 29(12):2189-2196. |
DU Jiawei, WU Fang, LI Jinghan, et al. Line simplification method based on multi-bends groups division[J]. Journal of Computer-Aided Design & Computer Graphics, 2017, 29(12):2189-2196. | |
[14] | 钱海忠, 何海威, 王骁, 等. 采用三元弯曲组划分的线要素化简方法[J]. 武汉大学学报(信息科学版), 2017, 42(8):1096-1103. |
QIAN Haizhong, HE Haiwei, WANG Xiao, et al. Line feature simplification method based on bend group division[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8):1096-1103. | |
[15] | AI Tinghua, KE Shu, YANG Min, et al. Envelope generation and simplification of polylines using Delaunay triangulation[J]. International Journal of Geographical Information Science, 2017, 31(2):297-319. |
[16] | 郑春燕, 郭庆胜, 胡华科. 基于蚁群优化算法的线状目标简化模型[J]. 测绘学报, 2011, 40(5):635-638. |
ZHENG Chunyan, GUO Qingsheng, HU Huake. The simplification model of linear objects based on ant colony optimization algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(5):635-638. | |
[17] | 段佩祥, 钱海忠, 何海威, 等. 基于支持向量机的线化简方法[J]. 武汉大学学报(信息科学版), 2020, 45(5):744-752, 783. |
DUAN Peixiang, QIAN Haizhong, HE Haiwei, et al. A line simplification method based on support vector machine[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5):744-752, 783. | |
[18] |
杜佳威, 武芳, 朱丽, 等. 图形、图像融合利用的集成学习智能化简方法及其在岛屿岸线化简中的应用[J]. 测绘学报, 2022, 51(3):373-387. DOI:.
doi: 10.11947/j.AGCS.2022.20210135 |
DU Jiawei, WU Fang, ZHU Li, et al. An ensemble learning simplification approach based on multiple machine-learning algorithms with the fusion using of raster and vector data and a use case of coastline simplification[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3):373-387. DOI:.
doi: 10.11947/j.AGCS.2022.20210135 |
|
[19] | DU Jiawei, WU Fang, XING Ruixing, et al. An automated approach to coastline simplification for maritime structures with collapse operation[J]. Marine Geodesy, 2021, 44(3):157-195. |
[20] | YAN Xiongfeng, AI Tinghua, YANG Min, et al. Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps[J]. International Journal of Geographical Information Science, 2021, 35(3):490-512. |
[21] | 武芳, 杜佳威, 钱海忠, 等. 地图综合智能化研究的发展与思考[J]. 武汉大学学报(信息科学版), 2022, 47(10):1675-1687. |
WU Fang, DU Jiawei, QIAN Haizhong, et al. Overview of research progress and reflections in intelligent map generalization[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10):1675-1687. | |
[22] | 朱强, 武芳, 钱海忠, 等. 一种顾及认知规律的曲线弯曲识别方法[J]. 辽宁工程技术大学学报(自然科学版), 2014, 33(4):521-526. |
ZHU Qiang, WU Fang, QIAN Haizhong, et al. An identification method of line curves based on cognitive laws[J]. Journal of Liaoning Technical University (Natural Science), 2014, 33(4):521-526. | |
[23] | 戴汝为. 模式识别的一类属性文法[J]. 自动化学报, 1983, 9(2):90-98. |
DAI Ruwei. Pattern recognition is a kind of attribute grammar[J]. Journal of Automation, 1983, 9(2):90-98. | |
[24] | SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[J]. Advances in Neural Information Processing Systems, 2014, 4(1):3104-3112. |
[25] | CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing. Doha: Association for Computational Linguistics, 2014. |
[26] | ZHAO Rui, WANG Dongzhe, YAN Ruqiang, et al. Machine health monitoring using local feature-based gated recurrent unit networks[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2):1539-1548. |
[27] |
LUONG M T, PHAM H, MANNING C D. Effective approaches to attention-based neural machine translation[J]. Computer Science, 2015. DOI:.
doi: 10.18653/v1/D15-1166 |
[28] |
BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[J]. Computer Science, 2014. DOI:.
doi: 10.48550/arXiv.1409.0473 |
[29] | KÖRDING K P, WOLPERT D M. The loss function of sensorimotor learning[J]. Proceedings of the National Academy of Sciences of the United States of America. 2004, 101(26):9839-9842. |
[30] |
KINGMA D, BA J. Adam: a method for stochastic optimization[J]. Computer Science, 2014. DOI:.
doi: 10.48550/arXiv.1412.6980 |
[31] |
KESKAR N S, MUDIGERE D, NOCEDAL J, et al. On large-batch training for deep learning: generalization gap and sharp minima[J]. Computer Science, 2016. DOI:.
doi: 10.48550/arXiv.1609.04836 |
[32] | 何海威, 钱海忠, 段佩祥, 等. 线要素化简及参数自动设置的案例推理方法[J]. 武汉大学学报(信息科学版), 2020, 45(3):344-352. |
HE Haiwei, QIAN Haizhong, DUAN Peixiang, et al. Case based reasoning method for line element simplification and automatic parameter setting[J]. Journal of Wuhan University (Information Science Edition), 2020, 45(3):344-352. | |
[33] | 武芳, 朱鲲鹏. 线要素化简算法几何精度评估[J]. 武汉大学学报(信息科学版), 2008, 33(6):600-603. |
WU Fang, ZHU Kunpeng. Geometric accuracy assessment of linear features' simplification algorithms[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6):600-603. |
[1] | 石岩, 王达, 邓敏, 杨学习. 时空异常探测:从数据驱动到知识驱动的内涵转变与实现路径[J]. 测绘学报, 2024, 53(8): 1493-1504. |
[2] | 鄢薪, 慎利, 潘俊杰, 戴延帅, 王继成, 郑晓莉, 李志林. 多尺度特征融合与空间优化的弱监督高分遥感建筑变化检测[J]. 测绘学报, 2024, 53(8): 1586-1597. |
[3] | 布金伟, 余科根, 汪秋兰, 李玲惠, 刘馨雨, 左小清, 常军. 融合星载GNSS-R数据和多变量参数全球海洋有效波高深度学习反演法[J]. 测绘学报, 2024, 53(7): 1321-1335. |
[4] | 江利明, 邵益, 周志伟, 马培峰, 王腾. 智能化InSAR数据处理研究进展、挑战与展望[J]. 测绘学报, 2024, 53(6): 1037-1056. |
[5] | 郭迟, 刘阳, 罗亚荣, 刘经南, 张全. 图像语义信息在视觉SLAM中的应用研究进展[J]. 测绘学报, 2024, 53(6): 1057-1076. |
[6] | 龚循强, 汪宏宇, 鲁铁定, 游为. 高铁桥墩沉降的通用渐进分解长期预测网络模型[J]. 测绘学报, 2024, 53(6): 1113-1127. |
[7] | 顾海燕, 杨懿, 李海涛, 孙立坚, 丁少鹏, 刘世琦. 高分辨率遥感影像样本库动态构建与智能解译应用[J]. 测绘学报, 2024, 53(6): 1165-1179. |
[8] | 丁少鹏, 卢秀山, 刘如飞, 杨懿, 顾海燕, 李海涛. 联合目标特征引导与多重注意力的建筑物变化检测[J]. 测绘学报, 2024, 53(6): 1224-1235. |
[9] | 刘慧敏, 张陈为, 谌恺祺, 邓敏, 彭翀. 基于深度学习的城市PM2.5浓度时空分布预测及不确定性评估[J]. 测绘学报, 2024, 53(4): 750-760. |
[10] | 孙传猛, 魏宇, 李欣宇, 马铁华, 武志博. 复杂场景下无水尺水位的影像水位反演智能检测方法[J]. 测绘学报, 2024, 53(3): 558-568. |
[11] | 廖钊宏, 张依晨, 杨飚, 林明春, 孙文博, 高智. 基于Swin Transformer-CNN的单目遥感影像高程估计方法及其在公路建设场景中的应用[J]. 测绘学报, 2024, 53(2): 344-352. |
[12] | 林云浩, 王艳军, 李少春, 蔡恒藩. 一种耦合DeepLab与Transformer的农作物种植类型遥感精细分类方法[J]. 测绘学报, 2024, 53(2): 353-366. |
[13] | 王密, 程昫, 潘俊, 皮英冬, 肖晶. 大模型赋能智能摄影测量:现状、挑战与前景[J]. 测绘学报, 2024, 53(10): 1955-1966. |
[14] | 江宝得, 黄威, 许少芬, 巫勇. 融合分散自适应注意力机制的多尺度遥感影像建筑物实例细化提取[J]. 测绘学报, 2023, 52(9): 1504-1514. |
[15] | 曹兴文, 郑宏伟, 刘英, 吴孟泉, 王灵玥, 包安明, 陈曦. 多行人轨迹多视角三维仿真视频学习预测法[J]. 测绘学报, 2023, 52(9): 1595-1608. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||