
测绘学报 ›› 2024, Vol. 53 ›› Issue (6): 1195-1211.doi: 10.11947/j.AGCS.2024.20230415
彭代锋1,2,3,4(
), 翟晨晨1, 周顶蔚1, 张永军5, 管海燕1, 臧玉府1
收稿日期:2023-09-28
发布日期:2024-07-22
作者简介:彭代锋(1988—),男,博士,副教授,研究方向为遥感影像智能解译。 E-mail:daifeng@nuist.edu.cn
基金资助:
Daifeng PENG1,2,3,4(
), Chenchen ZHAI1, Dingwei ZHOU1, Yongjun ZHANG5, Haiyan GUAN1, Yufu ZANG1
Received:2023-09-28
Published:2024-07-22
About author:PENG Daifeng (1988—), male, PhD, associate professor, majors in remote sensing image intelligent interpretation. E-mail: daifeng@nuist.edu.cn
Supported by:摘要:
针对复杂背景、光谱变化等因素导致高分辨率遥感影像中细小地物检测缺失,几何结构检测不完整等问题,本文联合卷积网络和Transformer网络优势,提出一种基于金字塔语义token全局信息增强的变化检测网络(PST-GIENet)。首先,利用无最大池化层的ResNet18网络提取多时相影像深度特征以构建融合特征,并采用联合注意力机制和深监督策略提高融合特征表达能力;然后,通过空间金字塔池化将影像特征表示为多尺度语义token,进而利用Transformer编码器和解码器对融合特征空间进行全局上下文建模;最后,通过逐层上采样解码器生成最终变化图。为验证本文方法有效性,采用LEVIR-CD、CDD和WHU-CD3个公开变化检测数据集进行对比试验与分析,定量结果表明PST-GIENet在3个数据集中均取得最优精度指标,其F1值分别达到91.71%、96.16%和94.08%。目视结果表明PST-GIENet可有效抑制复杂背景、光谱变化等因素干扰,显著增强网络对地物边缘结构和多尺度变化的捕捉能力,取得最佳目视效果。
中图分类号:
彭代锋, 翟晨晨, 周顶蔚, 张永军, 管海燕, 臧玉府. 基于金字塔语义token全局信息增强的高分光学遥感影像变化检测[J]. 测绘学报, 2024, 53(6): 1195-1211.
Daifeng PENG, Chenchen ZHAI, Dingwei ZHOU, Yongjun ZHANG, Haiyan GUAN, Yufu ZANG. High-resolution optical images change detection based on global information enhancement by pyramid semantic token[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1195-1211.
表2
不同方法变化检测效果定量比较"
| 方法 | LEVIR-CD | CDD | WHU-CD | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| P | R | F1值 | IoU | OA | P | R | F1值 | IoU | OA | P | R | F1值 | IoU | OA | |
| FC-EF[ | 87.57 | 78.14 | 82.58 | 70.34 | 96.65 | 76.28 | 71.01 | 73.55 | 58.17 | 93.98 | 81.23 | 73.30 | 77.06 | 62.68 | 98.31 |
| FC-Siam-Conc[ | 90.96 | 82.96 | 86.78 | 76.64 | 97.35 | 86.21 | 82.36 | 84.24 | 72.77 | 96.36 | 47.88 | 82.84 | 60.69 | 43.56 | 95.85 |
| FC-Siam-Diff[ | 91.44 | 79.92 | 85.29 | 74.35 | 97.01 | 83.88 | 79.27 | 81.51 | 68.79 | 95.76 | 79.33 | 72.40 | 75.70 | 60.91 | 98.20 |
| UNet++_MSOF[ | 89.08 | 85.37 | 87.19 | 77.28 | 97.31 | 89.36 | 87.22 | 88.27 | 79.00 | 97.27 | 88.96 | 82.27 | 85.48 | 74.65 | 98.92 |
| SNUNet[ | 89.98 | 87.63 | 88.79 | 79.83 | 97.79 | 95.45 | 95.14 | 95.29 | 91.01 | 98.89 | 88.58 | 88.68 | 88.63 | 79.58 | 99.12 |
| STANet[ | 85.00 | 91.40 | 88.10 | 78.70 | 98.70 | 88.00 | 94.30 | 91.10 | 83.60 | 97.80 | 84.92 | 88.57 | 86.71 | 76.53 | 98.95 |
| DSIFN[ | 93.30 | 86.21 | 89.61 | 81.18 | 97.80 | 88.09 | 96.22 | 91.97 | 85.14 | 98.03 | 88.39 | 83.48 | 85.86 | 75.22 | 98.94 |
| BIT[ | 90.50 | 89.42 | 89.96 | 81.75 | 98.89 | 95.15 | 92.41 | 93.76 | 88.25 | 98.55 | 90.96 | 89.32 | 90.13 | 82.04 | 99.24 |
| ICIF-Net[ | 91.80 | 88.48 | 90.11 | 82.00 | 99.11 | 95.40 | 92.72 | 94.04 | 88.75 | 98.62 | 93.01 | 85.47 | 88.90 | 80.11 | 98.99 |
| ChangeFormer[ | 92.05 | 88.81 | 90.40 | 82.48 | 99.04 | 95.32 | 95.50 | 95.41 | 91.22 | 98.92 | 91.59 | 87.72 | 89.62 | 81.18 | 99.21 |
| FTNet[ | 92.71 | 89.37 | 91.01 | 83.51 | 99.06 | 92.00 | 77.22 | 83.97 | 72.37 | 96.03 | 95.43 | 89.33 | 92.28 | 85.67 | 99.24 |
| PST-GIENet | 92.32 | 91.11 | 91.71 | 84.69 | 99.16 | 95.86 | 96.47 | 96.16 | 92.60 | 99.05 | 95.39 | 92.79 | 94.08 | 88.81 | 99.41 |
表3
LEVIR-CD数据集中各模型精度与复杂度对比"
| 方法 | F1值/(%) | 参数量 | 测试时间/s |
|---|---|---|---|
| FC-EF[ | 82.58 | 1.35 | 34 |
| FC-Siam-Conc[ | 86.78 | 1.55 | 38 |
| FC-Siam-Diff[ | 85.29 | 1.35 | 38 |
| UNet++_MSOF[ | 87.19 | 9.05 | 65 |
| SNUNet[ | 88.79 | 12.03 | 245 |
| DSIFN[ | 88.10 | 50.44 | 117 |
| STANet[ | 89.61 | 16.93 | 64 |
| BIT[ | 89.96 | 3.49 | 63 |
| ICIF-Net[ | 90.11 | 23.84 | 88 |
| ChangeFormer[ | 90.40 | 41.01 | 140 |
| FTNet[ | 91.01 | 164.45 | 375 |
| PST-GIENet | 91.71 | 28.60 | 67 |
表5
Transformer编码器和解码器深度对变化检测精度影响"
| ED | DD | LEVIR-CD | CDD | WHU-CD | |||
|---|---|---|---|---|---|---|---|
| F1值 | IoU | F1值 | IoU | F1值 | IoU | ||
| 0 | 0 | 91.37 | 84.11 | 95.08 | 90.61 | 92.81 | 86.59 |
| 1 | 1 | 91.67 | 83.94 | 95.55 | 91.47 | 93.86 | 88.43 |
| 2 | 1 | 91.40 | 84.16 | 95.58 | 91.54 | 92.70 | 86.39 |
| 4 | 1 | 91.36 | 84.10 | 95.05 | 90.56 | 92.02 | 85.22 |
| 8 | 1 | 91.29 | 83.97 | 95.36 | 91.28 | 93.90 | 88.51 |
| 1 | 2 | 91.60 | 84.51 | 95.59 | 91.54 | 93.56 | 87.90 |
| 1 | 4 | 91.71 | 84.69 | 95.99 | 92.29 | 93.55 | 87.88 |
| 1 | 8 | 91.70 | 84.67 | 96.16 | 92.60 | 94.08 | 88.81 |
| [1] | BRUZZONE L, BOVOLO F. A novel framework for the design of change-detection systems for very-high-resolution remote sensing images[J]. Proceedings of the IEEE, 2013, 101(3):609-630. |
| [2] | TEWKESBURY A P, COMBER A J, TATE N J, et al. A critical synthesis of remotely sensed optical image change detection techniques[J]. Remote Sensing of Environment, 2015, 160:1-14. |
| [3] | DEMIR B, BOVOLO F, BRUZZONE L. Updating land-cover maps by classification of image time series: a novel change-detection-driven transfer learning approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1):300-312. |
| [4] | JIN Suming, YANG Limin, DANIELSON P, et al. A comprehensive change detection method for updating the national land cover database to circa 2011[J]. Remote Sensing of Environment, 2013, 132:159-175. |
| [5] | LE HÉGARAT-MASCLE S, OTTLÉC , GUÉRIN C. Land cover change detection at coarse spatial scales based on iterative estimation and previous state information[J]. Remote Sensing of Environment, 2005, 95(4):464-479. |
| [6] | BRUZZONE L, PRIETO D F. Automatic analysis of the difference image for unsupervised change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(3):1171-1182. |
| [7] | FALCO N, MARPU P R, BENEDIKTSSON J A. Comparison of ITPCA and IRMAD for automatic change detection using initial change mask[C]//Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium. Munich: IEEE, 2012: 6769-6772. |
| [8] | WU Chen, DU Bo, CUI Xiaohui, et al. A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion[J]. Remote Sensing of Environment, 2017, 199:241-255. |
| [9] | CAO Guo, LI Yupeng, LIU Yazhou, et al. Automatic change detection in high-resolution remote-sensing images by means of level set evolution and support vector machine classification[J]. International Journal of Remote Sensing, 2014, 35(16):6255-6270. |
| [10] | CELIK T. Unsupervised change detection in satellite images using principal component analysis and k-means clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4):772-776. |
| [11] | BENEDEK C, SZIRANYI T. Change detection in optical aerial images by a multilayer conditional mixed Markov model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(10):3416-3430. |
| [12] | LV Pengyuan, ZHONG Yanfei, ZHAO Ji, et al. Unsupervised change detection based on hybrid conditional random field model for high spatial resolution remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7):4002-4015. |
| [13] | ZHANG Yongjun, PENG Daifeng, HUANG Xu. Object-based change detection for VHR images based on multiscale uncertainty analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(1):13-17. |
| [14] | GIL-YEPES J L, RUIZ L A, RECIO J A, et al. Description and validation of a new set of object-based temporal geostatistical features for land-use/land-cover change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 121:77-91. |
| [15] | DAI Yuchao, ZHANG Jing, HE Mingyi, et al. Salient object detection from multi-spectral remote sensing images with deep residual network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2):101-110. |
| [16] | CHAI Junyi, ZENG Hao, LI Anming, et al. Deep learning in computer vision: a critical review of emerging techniques and application scenarios[J]. Machine Learning with Applications, 2021, 6:100134. |
| [17] | WANG Min, WANG Peidong. CFM-UNet: a joint CNN and transformer network via cross feature modulation for remote sensing images segmentation[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(4):40-47. |
| [18] | YANG Yuanxi, REN Xia, WANG Jianrong. Development of integrated and intelligent geodetic and photogrammetry satellites with corresponding key technologies[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(4):3-12. |
| [19] | MA Lei, LIU Yu, ZHANG Xueliang, et al. Deep learning in remote sensing applications: a meta-analysis and review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152:166-177. |
| [20] | 张祖勋, 姜慧伟, 庞世燕, 等. 多时相遥感影像的变化检测研究现状与展望[J]. 测绘学报, 2022, 51(7):1091-1107. DOI:10.11947/j.AGCS.2022.20220070. |
| ZHANG Zuxun, JIANG Huiwei, PANG Shiyan, et al. Review and prospect in change detection of multi-temporal remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1091-1107. DOI:10.11947/j.AGCS.2022.20220070. | |
| [21] | EL AMIN A M, LIU Qingjie, WANG Yunhong. Zoom out CNNs features for optical remote sensing change detection[C]//Proceedings of the 2nd International Conference on Image, Vision and Computing. Chengdu: IEEE, 2017: 812-817. |
| [22] | ZHANG Hui, GONG Maoguo, ZHANG Puzhao, et al. Feature-level change detection using deep representation and feature change analysis for multispectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11):1666-1670. |
| [23] | LEI Yu, LIU Xiaodong, SHI Jiao, et al. Multiscale superpixel segmentation with deep features for change detection[J]. IEEE Access, 2019, 7:36600-36616. |
| [24] | GONG Maoguo, ZHAO Jiaojiao, LIU Jia, et al. Change detection in synthetic aperture radar images based on deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(1):125-138. |
| [25] | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Proceedings of 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. |
| [26] | BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495. |
| [27] | CAYE DAUDT R, LE SAUX B, BOULCH A. Fully convolutional Siamese networks for change detection[C]//Proceedings of 2018 IEEE International Conference on Image Processing. Athens: IEEE, 2018: 4063-4067. |
| [28] | CAYE DAUDT R, LE SAUX B, BOULCH A, et al. Multitask learning for large-scale semantic change detection[J]. Computer Vision and Image Understanding, 2019, 187:102783. |
| [29] | ZHOU Zongwei, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: a nested U-net architecture for medical image segmentation[C]//Proceedings of 2018 Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer: Cham, 2018: 3-11. |
| [30] | PENG Daifeng, ZHANG Yongjun, GUAN Haiyan. End-to-end change detection for high resolution satellite images using improved UNet++[J]. Remote Sensing, 2019, 11(11):1382. |
| [31] | 王超, 王帅, 陈晓, 等. 联合UNet++和多级差分模块的多源光学遥感影像对象级变化检测[J]. 测绘学报, 2023, 52(2):283-296.DOI:10.11947/j.AGCS.2023.20220202. |
| WANG Chao, WANG Shuai, CHEN Xiao, et al. Object-level change detection of multi-sensor optical remote sensing images combined with UNet++ and multi-level difference module[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2):283-296. DOI:10.11947/j.AGCS.2023.20220202. | |
| [32] | FANG Sheng, LI Kaiyu, SHAO Jinyuan, et al. SNUNet-CD: a densely connected Siamese network for change detection of VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:8007805. |
| [33] | 叶沅鑫, 孙苗苗, 周亮, 等. 面向建筑物变化检测的主体边缘分解与重组神经网络[J]. 测绘学报, 2023, 52(1):71-81.DOI:10.11947/j.AGCS.2023.20210350. |
| YE Yuanxin, SUN Miaomiao, ZHOU Liang, et al. Main body, edge decomposition and reorganization network for building change detection[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(1):71-81. DOI:10.11947/j.AGCS.2023.20210350. | |
| [34] | NIU Zhaoyang, ZHONG Guoqiang, YU Hui. A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452:48-62. |
| [35] | 梁哲恒, 黎宵, 邓鹏, 等. 融合多尺度特征注意力的遥感影像变化检测方法[J]. 测绘学报, 2022, 51(5):668-676.DOI:10.11947/j.AGCS.2022.20200540. |
| LIANG Zheheng, LI Xiao, DENG Peng, et al. Remote sensing image change detection fusion method integrating multi-scale feature attention[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5):668-676. DOI:10.11947/j.AGCS.2022.20200540. | |
| [36] | ZHANG Chenxiao, YUE Peng, TAPETE D, et al. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166:183-200. |
| [37] | SHI Qian, LIU Mengxi, LI Shengchen, et al. A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5604816. |
| [38] | CHEN Jie, YUAN Ziyang, PENG Jian, et al. DASNet: dual attentive fully convolutional Siamese networks for change detection in high-resolution satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:1194-1206. |
| [39] | CHEN Hao, SHI Zhenwei. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10):1662. |
| [40] | CHEN Hao, QI Zipeng, SHI Zhenwei. Remote sensing image change detection with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5607514. |
| [41] | SHI Nian, CHEN Keming, ZHOU Guangyao. A divided spatial and temporal context network for remote sensing change detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15:4897-4908. |
| [42] | SONG Ze, WEI Xiaohui, KANG Xudong, et al. Toward efficient remote sensing image change detection via cross-temporal context learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:5404210. |
| [43] | FENG Yuchao, XU Honghui, JIANG Jiawei, et al. ICIF-net: intra-scale cross-interaction and inter-scale feature fusion network for bitemporal remote sensing images change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:4410213. |
| [44] | BANDARA W G C, PATEL V M. A transformer-based Siamese network for change detection[C]//Proceedings of 2022 IEEE International Geoscience and Remote Sensing Symposium. Kuala Lumpur: IEEE, 2022: 207-210. |
| [45] | ZHANG Cui, WANG Liejun, CHENG Shuli, et al. SwinSUNet: pure transformer network for remote sensing image change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5224713. |
| [46] | YAN Tianyu, WAN Zifu, ZHANG Pingping. Fully transformer network for change detection of remote sensing images[C]//Proceedings of the 16th Asian Conference on Computer Vision. Macao: ACM Press, 2022: 1691-1708. |
| [47] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of 2018 European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 3-19. |
| [48] | LEE C Y, XIE S, GALLAGHER P, et al. Deeply-supervised nets[C]//Proceedings of 2015 Conference on Artificial Intelligence and Statistics. [S.l.]: PMLR, 2015: 562-570. |
| [49] | LEBEDEV M A, VIZILTER Y V, VYGOLOV O V, et al. Change detection in remote sensing images using conditional adversarial networks[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, XLII-2:565-571. |
| [50] | JI Shunping, WEI Shiqing, LU Meng. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1):574-586. |
| [1] | 张继贤, 顾海燕, 倪欢, 李海涛, 杨懿, 丁少鹏, 隋淞蔓. 遥感智能变化检测的深度学习方法:演变与发展趋势[J]. 测绘学报, 2025, 54(8): 1347-1370. |
| [2] | 程青, 汪博轩, 张洪艳. DRformer:一种渐进式耦合多尺度CNN与浓缩注意力Transformer的高光谱图像超分辨率方法[J]. 测绘学报, 2025, 54(7): 1230-1242. |
| [3] | 王超, 陈天宇, 张同, AhmedTanvir, 纪立强, 谢涛, 杨佳俊, 王帅. 基于全局差分增强模块和平衡惩罚损失的多源光学遥感影像变化检测[J]. 测绘学报, 2025, 54(5): 873-887. |
| [4] | 赵一鸣, 胡克林, 涂可龙, 卿雅娴, 杨超, 祁昆仑, 吴华意. 基于SAR与光学遥感影像融合的多标签场景分类方法[J]. 测绘学报, 2025, 54(5): 911-923. |
| [5] | 谷宇鹏, 刘万科, 张小红, 胡捷, 胡树杰, 雷维豪, 郑凯. 鱼眼图像支持的GNSS随机模型神经网络生成方法[J]. 测绘学报, 2025, 54(12): 2206-2218. |
| [6] | 潘雄, 赵子瑄, 平常, 金丽宏, 刘立龙. 联合半参数规则学习的电离层TEC预报[J]. 测绘学报, 2025, 54(10): 1741-1756. |
| [7] | 王艳军, 唐徐超, 王成, 蔡恒藩. 基于道路拓扑关联特征的城乡道路面精细提取网络[J]. 测绘学报, 2025, 54(1): 75-89. |
| [8] | 龚良雄, 李星华, 程远明, 赵兴友, 谢仁平, 王红根. 时空差异增强与自适应特征融合的轻量级遥感影像变化检测网络[J]. 测绘学报, 2025, 54(1): 136-153. |
| [9] | 刘万增, 陈杭, 任加新, 张兆江, 李然, 赵婷婷, 翟曦, 朱秀丽. 基于混合智能的街景影像知识提取方法[J]. 测绘学报, 2024, 53(9): 1817-1828. |
| [10] | 鄢薪, 慎利, 潘俊杰, 戴延帅, 王继成, 郑晓莉, 李志林. 多尺度特征融合与空间优化的弱监督高分遥感建筑变化检测[J]. 测绘学报, 2024, 53(8): 1586-1597. |
| [11] | 徐涛, 杨元维, 高贤君, 王志威, 潘越, 李少华, 许磊, 王艳军, 刘波, 余静, 吴凤敏, 孙浩宇. 融合图卷积与多尺度特征的接触网点云语义分割[J]. 测绘学报, 2024, 53(8): 1624-1633. |
| [12] | 殷吉崇, 武芳, 翟仁健, 邱越, 巩现勇, 行瑞星. 面向建筑物轮廓规则化的双路径边界约束与相对论生成对抗网络[J]. 测绘学报, 2024, 53(7): 1444-1457. |
| [13] | 宁晓刚, 张翰超, 张瑞倩. 遥感影像高可信智能不变检测技术框架与方法实践[J]. 测绘学报, 2024, 53(6): 1098-1112. |
| [14] | 蒋亚楠, 郑林枫, 许强, 汤明高, 朱星. 机理引导下的阶跃型滑坡位移预测深度学习模型[J]. 测绘学报, 2024, 53(6): 1128-1139. |
| [15] | 顾海燕, 杨懿, 李海涛, 孙立坚, 丁少鹏, 刘世琦. 高分辨率遥感影像样本库动态构建与智能解译应用[J]. 测绘学报, 2024, 53(6): 1165-1179. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||