
测绘学报 ›› 2025, Vol. 54 ›› Issue (7): 1230-1242.doi: 10.11947/j.AGCS.2025.20240485
收稿日期:2024-12-03
修回日期:2025-07-01
出版日期:2025-08-18
发布日期:2025-08-18
通讯作者:
张洪艳
E-mail:qingcheng@whu.edu.cn;zhanghongyan@cug.edu.cn
作者简介:程青(1987—),女,博士,研究员,博士生导师,主要从事遥感信息处理与应用方面的研究。E-mail:qingcheng@whu.edu.cn
基金资助:
Qing CHENG(
), Boxuan WANG, Hongyan ZHANG(
)
Received:2024-12-03
Revised:2025-07-01
Online:2025-08-18
Published:2025-08-18
Contact:
Hongyan ZHANG
E-mail:qingcheng@whu.edu.cn;zhanghongyan@cug.edu.cn
About author:CHENG Qing (1987—), female, PhD, researcher, PhD supervisor, majors in remote sensing information processing and applications. E-mail: qingcheng@whu.edu.cn
Supported by:摘要:
高光谱图像超分辨率技术旨在通过提升低分辨率高光谱图像的空间细节和质量,使其更好地服务于环境监测等领域。近年来,基于深度卷积神经网络的机器学习技术在光谱单图超分辨率领域上有着广泛的发展与应用,但仍存在难以兼顾空间多尺度局部特征与全局细节特征学习的缺陷。对此,本文设计了一种基于渐进式采样策略耦合卷积神经网络与Transformer架构的融合网络DRformer。一方面,通过多尺度自适应加权光谱关注模块,用于局部特征的多尺度学习并选择性强调光谱信息特征并进行第一次上采样;另一方面,在网络后半段进行第二次上采样后融入基于Transformer架构构建的CADR模块,用于处理图像的全局特征,增强有效信息。为了验证本文方法的有效性与稳健性,选取Chikusei与Houston2013数据集开展试验,相较于已有的GDRRN、SSPSR、EUNet及MSDformer等深度学习方法具有更好的超分辨率性能,并且设计了消融试验以验证本文方法中各模块的有效性。
中图分类号:
程青, 汪博轩, 张洪艳. DRformer:一种渐进式耦合多尺度CNN与浓缩注意力Transformer的高光谱图像超分辨率方法[J]. 测绘学报, 2025, 54(7): 1230-1242.
Qing CHENG, Boxuan WANG, Hongyan ZHANG. DRformer: a progressive coupled multiscale CNN and condensed attention Transformer method for hyperspectral image super-resolution[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1230-1242.
表1
DRformer网络参数"
| 模块 | 网络架构 | 输入尺寸 | 模型参数 | 输出尺寸 |
|---|---|---|---|---|
| 整体结构 | MAWSA | H×W×c | — | H×W×256 |
| Conv-UP | H×W×256 | 3×3,c,Stride1 | sH/2×sW/2×c | |
| Concatenation | sH/2×sW/2×c | — | sH/2×sW/2×C | |
| UP | sH/2×sW/2×C | — | sH×sW×C | |
| CADR-Conv | sH×sW×C | 1×1,256,Stride1 | sH×sW×256 | |
| Bicubic-Conv | H×W×C | 3×3,256,Stride1 | sH×sW×256 | |
| Conv | sH×sW×256 | 3×3,C,Stride1 | sH×sW×C | |
| MAWSA | Dconv(1,3,5)-ReLU | H×W×c | 3×3,256,Stride1,dilation(1,3,5) | H×W×256 |
| Conv-ReLU-Conv | H×W×256 | 3×3,256,Stride1 | H×W×256 | |
| AWCA | H×W×256 | reduction=16 | H×W×256 | |
| CADR | Condensed | sH×sW×C | num_heads=8,d=16 | sH×sW×C |
| Attention | ||||
| DRNet | sH×sW×C | sH×sW×C | ||
| (PReLU-Conv) | 3×3,256,Stride1 | |||
| (Resblock) | 3×3,256,Stride1 | |||
| (PReLU-Conv) | 3×3,C,Stride1 |
表2
Chikusei数据集的试验结果"
| 比例因子 | 方法 | PSNR | SSIM | CC | RMSE | ERGAS | SAM |
|---|---|---|---|---|---|---|---|
| ×4 | Bicubic | 37.637 7 | 0.895 3 | 0.921 2 | 0.015 6 | 6.756 3 | 3.403 9 |
| GDRRN | 37.721 8 | 0.897 0 | 0.922 3 | 0.015 4 | 6.697 0 | 3.321 5 | |
| SSPSR | 39.505 5 | 0.932 8 | 0.947 5 | 0.012 6 | 5.473 7 | 2.719 0 | |
| EUNet | 38.867 0 | 0.926 0 | 0.939 7 | 0.013 4 | 5.931 8 | 2.751 7 | |
| MSDformer | 39.067 1 | 0.924 5 | 0.942 3 | 0.013 2 | 5.714 1 | 2.864 4 | |
| 本文方法 | 40.085 1 | 0.933 4 | 0.943 3 | 0.012 4 | 5.224 1 | 2.697 1 | |
| ×8 | Bicubic | 34.504 8 | 0.806 8 | 0.831 3 | 0.022 3 | 9.697 5 | 5.043 5 |
| GDRRN | 34.556 4 | 0.807 3 | 0.832 7 | 0.022 2 | 9.646 9 | 4.991 5 | |
| SSPSR | 34.938 0 | 0.822 9 | 0.848 5 | 0.021 0 | 9.318 6 | 4.863 2 | |
| EUNet | 35.115 6 | 0.833 4 | 0.853 8 | 0.020 7 | 9.073 7 | 4.502 8 | |
| MSDformer | 34.790 2 | 0.816 2 | 0.842 2 | 0.021 5 | 9.433 1 | 4.823 0 | |
| 本文方法 | 35.913 8 | 0.822 3 | 0.810 6 | 0.020 6 | 8.594 5 | 4.478 9 |
表3
Houston2013数据集上的试验结果"
| 方法 | 比例因子 | PSNR | SSIM | CC | RMSE | ERGAS | SAM |
|---|---|---|---|---|---|---|---|
| Bicubic | ×4 | 33.698 4 | 0.801 6 | 0.901 4 | 0.025 6 | 6.157 1 | 6.459 2 |
| GDRRN | ×4 | 33.798 3 | 0.806 7 | 0.903 2 | 0.025 3 | 6.084 1 | 6.342 1 |
| SSPSR | ×4 | 34.207 3 | 0.831 4 | 0.910 1 | 0.023 9 | 5.748 1 | 5.494 4 |
| EUNet | ×4 | 34.264 0 | 0.834 3 | 0.911 4 | 0.023 7 | 5.698 1 | 5.479 8 |
| MSDformer | ×4 | 34.077 1 | 0.828 8 | 0.908 8 | 0.024 2 | 5.849 8 | 5.894 3 |
| 本文方法 | ×4 | 34.477 7 | 0.840 1 | 0.915 5 | 0.023 1 | 5.567 0 | 5.355 8 |
| Bicubic | ×8 | 31.120 9 | 0.673 0 | 0.816 3 | 0.034 7 | 8.339 1 | 9.365 7 |
| GDRRN | ×8 | 31.097 6 | 0.674 2 | 0.814 0 | 0.034 5 | 8.320 1 | 9.368 8 |
| SSPSR | ×8 | 31.221 5 | 0.684 1 | 0.820 7 | 0.033 9 | 8.174 1 | 8.895 9 |
| EUNet | ×8 | 31.349 1 | 0.687 7 | 0.824 1 | 0.033 5 | 8.055 6 | 8.634 9 |
| MSDformer | ×8 | 31.305 1 | 0.688 2 | 0.823 0 | 0.033 6 | 8.108 1 | 9.079 3 |
| 本文方法 | ×8 | 31.350 2 | 0.690 4 | 0.824 2 | 0.033 5 | 8.120 1 | 8.787 1 |
表5
消融试验结果"
| 变体 | 参数量/MB | PSNR | SSIM | CC | RMSE | ERGAS | SAM |
|---|---|---|---|---|---|---|---|
| 本文方法 | 12.988 2 | 34.477 7 | 0.840 1 | 0.915 5 | 0.023 1 | 5.567 0 | 5.355 8 |
| 变体1 | 14.241 6 | 34.229 5 | 0.830 7 | 0.910 9 | 0.023 7 | 5.728 5 | 5.654 3 |
| 变体2 | 12.988 2 | 33.968 1 | 0.827 6 | 0.907 1 | 0.024 1 | 5.883 1 | 6.114 6 |
| 变体3 | 9.095 6 | 34.181 7 | 0.828 9 | 0.910 4 | 0.023 9 | 5.760 4 | 5.558 5 |
| 变体4 | 5.689 8 | 34.112 1 | 0.827 5 | 0.909 2 | 0.024 1 | 5.818 8 | 5.985 3 |
| [1] | SABINS F F. Remote sensing for mineral exploration[J]. Ore Geology Reviews, 1999, 14(3-4): 157-183. |
| [2] | BACKMAN V, WALLACE M B, PERELMAN L T, et al. Detection of preinvasive cancer cells[J]. Nature, 2000, 406(6791): 35-36. |
| [3] | LU Guolan, FEI Baowei. Medical hyperspectral imaging: a review[J]. Journal of Biomedical Optics, 2014, 19(1): 10901. |
| [4] | WANG Kexian, ZHENG Shunyi, LI Rui, et al. A deep double-channel dense network for hyperspectral image classification[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 46-62. |
| [5] | XUE Zhaohui, NIE Xiangyu. Low-rank and sparse representation with adaptive neighborhood regularization for hyperspectral image classification[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 73-90. |
| [6] |
陈超, 梁锦涛, 杨刚, 等. 面向土地覆盖精准分类的遥感特征参数优选方法[J]. 测绘学报, 2024, 53(7): 1401-1416. DOI: .
doi: 10.11947/j.AGCS.2024.20230327 |
|
CHEN Chao, LIANG Jintao, YANG Gang, et al. Remote sensing parameters optimization for accurate land cover classification[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1401-1416. DOI: .
doi: 10.11947/j.AGCS.2024.20230327 |
|
| [7] |
叶思菁. 大数据环境下遥感图谱应用方法研究:以作物干旱监测为例[J]. 测绘学报, 2018, 47(6): 892. DOI: .
doi: 10.11947/j.AGCS.2018.20170535 |
|
YE Sijing. Research on application of remote sensing tupu-take monitoring of meteorological disaster for example[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 892. DOI: .
doi: 10.11947/j.AGCS.2018.20170535 |
|
| [8] | LI Jiaxin, HONG Danfeng, GAO Lianru, et al. Deep learning in multimodal remote sensing data fusion: a comprehensive review[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102926. |
| [9] |
张兵, 高连如, 李嘉鑫, 等. 高/多光谱遥感图像超分辨率融合研究进展与展望[J]. 测绘学报, 2023, 52(7): 1074-1089. DOI: .
doi: 10.11947/j.AGCS.2023.20220499 |
|
ZHANG Bing, GAO Lianru, LI Jiaxin, et al. Advances and prospects in hyperspectral and multispectral remote sensing image super-resolution fusion[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1074-1089. DOI: .
doi: 10.11947/j.AGCS.2023.20220499 |
|
| [10] | JIANG Junjun, SUN He, LIU Xianming, et al. Learning spatial-spectral prior for super-resolution of hyperspectral imagery[J]. IEEE Transactions on Computational Imaging, 2020, 6: 1082-1096. |
| [11] | DIAN Renwei, LI Shutao, GUO Anjing, et al. Deep hyperspectral image sharpening[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(11): 5345-5355. |
| [12] | LIU Jianjun, WU Zebin, XIAO Liang, et al. A truncated matrix decomposition for hyperspectral image super-resolution[J]. IEEE Transactions on Image Processing, 2020, 29: 8028-8042. |
| [13] | DIAN Renwei, LI Shutao, FANG Leyuan. Learning a low tensor-train rank representation for hyperspectral image super-resolution[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(9): 2672-2683. |
| [14] | KEYS R G. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(6): 1153-1160. |
| [15] | XU Yang, WU Zebin, CHANUSSOT J, et al. Hyperspectral images super-resolution via learning high-order coupled tensor ring representation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11): 4747-4760. |
| [16] | ZHANG Lefei, SONG Liangchen, DU Bo, et al. Nonlocal low-rank tensor completion for visual data[J]. IEEE Transactions on Cybernetics, 2021, 51(2): 673-685. |
| [17] | XU Yang, WU Zebin, CHANUSSOT J, et al. Nonlocal patch tensor sparse representation for hyperspectral image super-resolution[J]. IEEE Transactions on Image Processing, 2019, 28(6): 3034-3047. |
| [18] | GAO Lianru, HONG Danfeng, YAO Jing, et al. Spectral super-resolution of multispectral imagery with joint sparse and low-rank learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 2269-2280. |
| [19] | DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307. |
| [20] | KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[EB/OL]. [2024-10-15]. https://arxiv.org/abs/1511.04587v2. |
| [21] | LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu: IEEE, 2017: 1132-1140. |
| [22] | LI Yadong, MAVROMATIS S, ZHANG Feng, et al. Single-image super-resolution for remote sensing images using a deep generative adversarial network with local and global attention mechanisms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 3000224. |
| [23] | MENG Yapeng, LI Wenyuan, LEI Sen, et al. Large-factor super-resolution of remote sensing images with spectra-guided generative adversarial networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5634111. |
| [24] | WANG Junjie, ZHANG Mengmeng, LI Wei, et al. A multistage information complementary fusion network based on flexible-mixup for HSI-X image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(12): 17189-17201. |
| [25] | WANG Wuli, MA Xiaohu, LENG Linchun, et al. A hybrid CNN based on global reasoning for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. |
| [26] | MEI Shaohui, YUAN Xin, JI Jingyu, et al. Hyperspectral image spatial super-resolution via 3D full convolutional neural network[J]. Remote Sensing, 2017, 9(11): 1139. |
| [27] | LI Qiang, WANG Qi, LI Xuelong. Mixed 2D/3D convolutional network for hyperspectral image super-resolution[J]. Remote Sensing, 2020, 12(10): 1660. |
| [28] | FU Ying, LIANG Zhiyuan, YOU Shaodi. Bidirectional 3D quasi-recurrent neural network for hyperspectral image super-resolution[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2674-2688. |
| [29] | HAUNT J M, FERNANDEZ-BELTRANN R, PAOLETTI M E, et al. Remote sensing image super-resolution using deep residual channel attention[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9277-9289. |
| [30] | LIU Denghong, LI Jie, YUAN Qiangqiang. A spectral grouping and attention-driven residual dense network for hyperspectral image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7711-7725. |
| [31] | ZHANG Jing, SHAO Minhao, WAN Zekang, et al. Multi-scale feature mapping network for hyperspectral image super-resolution[J]. Remote Sensing, 2021, 13(20): 4180. |
| [32] | ALEXEY D. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. [2024-11-25]. https://arxiv.org/abs/2010.11929. |
| [33] | YIN Hongxu, VAHDAT A, ALVAREZ J M, et al. A-ViT: adaptive tokens for efficient vision transformer[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 10799-10808. |
| [34] | ZAMIR S W, ARORA A, KHAN S, et al. Restormer: efficient transformer for high-resolution image restoration[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 5718-5729. |
| [35] | WANG Min, WANG Peidong. CFM-UNet: a joint CNN and transformer network via cross feature modulation for remote sensing images segmentation[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(4): 40-47. |
| [36] | LIANG Jingyun, CAO Jiezhang, SUN Guolei, et al. SwinIR: image restoration using swin transformer[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision Workshops. Montreal: IEEE, 2021: 1833-1844. |
| [37] | LIU Yaoting, HU Jianwen, KANG Xudong, et al. Interactformer: interactive transformer and CNN for hyperspectral image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 3183468. |
| [38] | CHEN Xiangyu, WANG Xintao, ZHOU Jiantao, et al. Activating more pixels in image super-resolution transformer[EB/OL]. [2024-11-25]. https://arxiv.org/abs/2205.04437v3. |
| [39] | HE Jiang, YUAN Qiangqiang, LI Jie, et al. DsTer: a dense spectral transformer for remote sensing spectral super-resolution[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 109: 102773. |
| [40] | CHEN Shi, ZHANG Lefei, ZHANG Liangpei. MSDformer: multiscale deformable transformer for hyperspectral image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-14. |
| [41] | LI Jiaojiao, WU Chaoxiong, SONG Rui, et al. Adaptive weighted attention network with camera spectral sensitivity prior for spectral reconstruction from RGB images[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020: 1894-1903. |
| [42] | ZHAO Haiyu, GOU Yuanbiao, LI Boyun, et al. Comprehensive and delicate: an efficient transformer for image restoration[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 14122-14132. |
| [43] | LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[J]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2017, 7: 1132-1140. |
| [44] | AGGARWAL H K, MAJUMDAR A. Hyperspectral image denoising using spatio-spectral total variation[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 442-446. |
| [45] | LI Yong, ZHANG Lei, DINGL C, et al. Single hyperspectral image super-resolution with grouped deep recursive residual network[C]//Proceedings of 2018 IEEE Fourth International Conference on Multimedia Big Data. Xi'an: IEEE, 2018: 1-4. |
| [46] | LIU Denghong, LI Jie, YUAN Qiangqiang, et al. An efficient unfolding network with disentangled spatial-spectral representation for hyperspectral image super-resolution[J]. Information Fusion, 2023, 94: 92-111. |
| [47] | WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. |
| [48] | LONCAN L, DE ALMEIDA L B, BIOUCAS-DIAS J M, et al. Hyperspectral pansharpening: a review[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(3): 27-46. |
| [1] | 王超, 陈天宇, 张同, AhmedTanvir, 纪立强, 谢涛, 杨佳俊, 王帅. 基于全局差分增强模块和平衡惩罚损失的多源光学遥感影像变化检测[J]. 测绘学报, 2025, 54(5): 873-887. |
| [2] | 赵一鸣, 胡克林, 涂可龙, 卿雅娴, 杨超, 祁昆仑, 吴华意. 基于SAR与光学遥感影像融合的多标签场景分类方法[J]. 测绘学报, 2025, 54(5): 911-923. |
| [3] | 王艳军, 唐徐超, 王成, 蔡恒藩. 基于道路拓扑关联特征的城乡道路面精细提取网络[J]. 测绘学报, 2025, 54(1): 75-89. |
| [4] | 龚良雄, 李星华, 程远明, 赵兴友, 谢仁平, 王红根. 时空差异增强与自适应特征融合的轻量级遥感影像变化检测网络[J]. 测绘学报, 2025, 54(1): 136-153. |
| [5] | 刘万增, 陈杭, 任加新, 张兆江, 李然, 赵婷婷, 翟曦, 朱秀丽. 基于混合智能的街景影像知识提取方法[J]. 测绘学报, 2024, 53(9): 1817-1828. |
| [6] | 徐涛, 杨元维, 高贤君, 王志威, 潘越, 李少华, 许磊, 王艳军, 刘波, 余静, 吴凤敏, 孙浩宇. 融合图卷积与多尺度特征的接触网点云语义分割[J]. 测绘学报, 2024, 53(8): 1624-1633. |
| [7] | 蒋亚楠, 郑林枫, 许强, 汤明高, 朱星. 机理引导下的阶跃型滑坡位移预测深度学习模型[J]. 测绘学报, 2024, 53(6): 1128-1139. |
| [8] | 彭代锋, 翟晨晨, 周顶蔚, 张永军, 管海燕, 臧玉府. 基于金字塔语义token全局信息增强的高分光学遥感影像变化检测[J]. 测绘学报, 2024, 53(6): 1195-1211. |
| [9] | 丁少鹏, 卢秀山, 刘如飞, 杨懿, 顾海燕, 李海涛. 联合目标特征引导与多重注意力的建筑物变化检测[J]. 测绘学报, 2024, 53(6): 1224-1235. |
| [10] | 纪长琦, 郭肇捷, 孙海丽, 钟若飞. 基于移动激光扫描的地铁隧道渗漏水定位及快速检测方法[J]. 测绘学报, 2024, 53(6): 1236-1250. |
| [11] | 谢卫莹, 王子璇, 李云松. 高效通信的在轨分布式高光谱图像处理[J]. 测绘学报, 2024, 53(4): 589-598. |
| [12] | 庞世燕, 郝京京, 左志奇, 兰晶晶, 胡翔云. 融合密集连接和自注意力机制的高分辨率遥感影像变化检测方法[J]. 测绘学报, 2024, 53(12): 2244-2253. |
| [13] | 赵全意, 郑福建, 夏波, 李政英, 黄鸿. 基于深度流形蒸馏网络的高光谱遥感图像场景分类方法[J]. 测绘学报, 2024, 53(12): 2404-2415. |
| [14] | 余华飞, 邱天奇, 周哲, 龚冲亚, 肖天元, 杨敏, 艾廷华. 图Transformer支持下的河网模式识别[J]. 测绘学报, 2024, 53(11): 2075-2085. |
| [15] | 江宝得, 黄威, 许少芬, 巫勇. 融合分散自适应注意力机制的多尺度遥感影像建筑物实例细化提取[J]. 测绘学报, 2023, 52(9): 1504-1514. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||