[1] |
DOUGLAS D H, PEUCKER T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[J]. Cartographica: the International Journal for Geographic Information and Geovisualization, 1973, 10(2): 112-122.
|
[2] |
NAKOS B, MITROPOULOS V. Local length ratio as a measure of critical points detection for line simplification[C]//Proceedings of the 5th Workshop on Progress in Automated Map Generalization. Paris: IEEE, 2003.
|
[3] |
SAALFELD A. Topologically consistent line simplification with the Douglas-Peucker algorithm[J]. Cartography and Geographic Information Science, 1999, 26(1): 7-18.
|
[4] |
LI Zhilin, OPENSHAW S. Algorithms for automated line generalization on a natural principle of objective generalization[J]. International Journal of Geographical Information Systems, 1992, 6(5): 373-389.
|
[5] |
朱鲲鹏, 武芳, 王辉连, 等. Li-Openshaw算法的改进与评价[J]. 测绘学报, 2007, 36(4): 450-456.
|
|
ZHU Kunpeng, WU Fang, WANG Huilian, et al. Improvement and assessment of Li-openshaw algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(4): 450-456.
|
[6] |
VISVALINGAM M, WHYATT J D. Line generalization by repeated elimination of points[M]//Landmarks in Mapping. Oxford: Routledge, 2017: 144-155.
|
[7] |
WANG Zeshen, MÜLLER J C. Line generalization based on analysis of shape characteristics[J]. Cartography and Geographic Information Systems, 1998, 25(1): 3-15.
|
[8] |
顾腾, 陈晓勇, 刘成强. 一种Douglas-Peucker与Li-Openshaw结合改进的曲线化简方法[J]. 东华理工大学学报(自然科学版), 2016, 39(4): 396-400.
|
|
GU Teng, CHEN Xiaoyong, LIU Chengqiang. A modified line simplification method combined Douglas-Peucker with Li-Openshaw[J]. Journal of East China University of Technology (Natural Science), 2016, 39(4): 396-400.
|
[9] |
李成名, 郭沛沛, 殷勇, 等. 一种顾及空间关系约束的线化简算法[J]. 测绘学报, 2017, 46(4): 498-506. DOI: 10.11947/j.AGCS.2017.20160546.
|
|
LI Chengming, GUO Peipei, YIN Yong, et al. A line simplification algorithm considering spatial relations between two lines[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(4): 498-506. DOI: 10.11947/j.AGCS.2017.20160546.
|
[10] |
LI Juncheng, ZHAO Dongbiao. An investigation on image compression using the trigonometric Bézier curve with a shape parameter[J]. Mathematical Problems in Engineering, 2013: 731648.
|
[11] |
SARFRAZ M, ASIM M R, MASOOD A. Capturing outlines using cubic Bezier curves[C]//Proceedings of 2004 International Conference on Information and Communication Technologies: From Theory to Applications. Damascus: IEEE, 2004: 539-540.
|
[12] |
LIU Pengcheng, LI Xingong, LIU Weibo, et al. Fourier-based multi-scale representation and progressive transmission of cartographic curves on the Internet[J]. Cartography and Geographic Information Science, 2016, 43(5): 454-468.
|
[13] |
LIU Pengcheng, XIAO Tianyuan, XIAO Jia, et al. A multi-scale representation model of polyline based on head/tail breaks[J]. International Journal of Geographical Information Science, 2020, 34(11): 2275-2295.
|
[14] |
吴凡. 基于小波分析的线状特征数据无级表达[J]. 武汉大学学报(信息科学版), 2004, 29(6): 488-491.
|
|
WU Fan. Scaleless representations for polyline spatial data based on wavelet analysis[J]. Geomatics and Information Science of Wuhan University, 2004, 29(6): 488-491.
|
[15] |
吴凡, 祝国瑞. 基于小波分析的地貌多尺度表达与自动综合[J]. 武汉大学学报(信息科学版), 2001, 26(2): 170-176.
|
|
WU Fan, ZHU Guorui. Multi-scale representation and automatic generalization of relief based on wavelet analysis[J]. Geomatics and Information Science of Wuhan University, 2001, 26(2): 170-176.
|
[16] |
ZHOU Qi, LI Zhilin. Use of artificial neural networks for selective omission in updating road networks[J]. The Cartographic Journal, 2014, 51(1): 38-51.
|
[17] |
ZHOU Qi, LI Zhilin. A comparative study of various supervised learning approaches to selective omission in a road network[J]. The Cartographic Journal, 2017, 54(3): 254-264.
|
[18] |
DU Jiawei, WU Fang, YIN Jichong, et al. Polyline simplification based on the artificial neural network with constraints of generalization knowledge[J]. Cartography and Geographic Information Science, 2022, 49(4): 313-337.
|
[19] |
JIANG Baode, XU Shaofen, LI Zhiwei. Polyline simplification using a region proposal network integrating raster and vector features[J]. GIScience & Remote Sensing, 2023, 60(1): 2275427.
|
[20] |
COURTIAL A, EL AYEDI A, TOUYA G, et al. Exploring the potential of deep learning segmentation for mountain roads generalisation[J]. ISPRS International Journal of Geo-Information, 2020, 9(5): 338.
|
[21] |
DU Jiawei, WU Fang, XING Ruixing, et al. Segmentation and sampling method for complex polyline generalization based on a generative adversarial network[J]. Geocarto International, 2022, 37(14): 4158-4180.
|
[22] |
YU Wenhao, CHEN Yujie. Data-driven polyline simplification using a stacked autoencoder-based deep neural network[J]. Transactions in GIS, 2022, 26(5): 2302-2325.
|
[23] |
YAN Xiongfeng, YANG Min. A deep learning approach for polyline and building simplification based on graph autoencoder with flexible constraints[J]. Cartography and Geographic Information Science, 2024, 51(1): 79-96.
|
[24] |
TONG Xiaohua, ZHOU Lejingyi, JIN Yanmin. Positional error model of line segments with modeling and measuring errors using brownian bridge[J]. Journal of Geodesy & Geoinformation Science, 2023, 6(2): 1-10.
|
[25] |
QIAN Haizhong, ZHANG Meng, WU Fang. A new simplification approach based on the oblique-dividing-curve method for contour lines[J]. ISPRS International Journal of Geo-Information, 2016, 5(9): 153.
|
[26] |
SANTURKAR S, TSIPRAS D, ILYAS A, et al. How does batch normalization help optimization?[J]. Advances in neural information processing systems, 2018, 31(1): 2483-2493.
|