测绘学报 ›› 2024, Vol. 53 ›› Issue (8): 1634-1643.doi: 10.11947/j.AGCS.2024.20230580

• 地图学与地理信息 • 上一篇    下一篇

一种曲线数据压缩的自编码器神经网络方法

刘鹏程1,2(), 马宏然1,2, 周洋1,2, 邵子芹1,2   

  1. 1.华中师范大学地理过程分析与模拟湖北省重点实验室,湖北 武汉 430079
    2.华中师范大学城市与环境科学学院,湖北 武汉 430079
  • 收稿日期:2023-12-19 发布日期:2024-09-25
  • 作者简介:刘鹏程(1968—),男,博士,教授,主要研究方向为地图综合、空间模式识别和空间智能分析。E-mail:liupc@ccnu.edu.cn
  • 基金资助:
    国家自然科学基金(42071455)

Autoencoder neural network method for curve data compression

Pengcheng LIU1,2(), Hongran MA1,2, Yang ZHOU1,2, Ziqin SHAO1,2   

  1. 1.Key Laboratory for Geographical Process Analysis & Simulation of Hubei Province, Central China Normal University, Wuhan 430079, China
    2.School of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China
  • Received:2023-12-19 Published:2024-09-25
  • About author:LIU Pengcheng (1968—), male, PhD, professor, majors in map generalization, spatial pattern recognition and GeoAI. E-mail: liupc@ccnu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42071455)

摘要:

矢量空间数据的压缩是减少存储空间及节省网络传输带宽最直接有效的途径。本文利用自编码器神经网络构建了一种面向矢量曲线数据的压缩和解压模型。该模型针对不同规模和复杂度的曲线数据,首先进行分段和重采样处理进而规范化输入向量,然后通过优化自编码器结构和调整损失函数实现了高精度的压缩解码模块,最后通过弧段数据的坐标闭合差分配确保了数据的稳定性。对山西、湖南、江西3省的1∶100万县级弧段进行了压缩和还原试验,分析发现:数据还原精度随压缩率变小而变小,当压缩率小于35%后,数据还原精度呈波动趋势,25%为满足精度要求的适宜压缩率。比较傅里叶级数及贝塞尔曲线拟合方法发现本文模型压缩精度和处理速度在一定的压缩率范围内存在优势,同时该模型说明了深度学习在提取空间要素几何特征方面有一定的潜力。

关键词: 自编码器, 矢量空间数据压缩, 线要素化简, 地图综合

Abstract:

Vector spatial data compression stands as the most direct and effective means for reducing storage space and conserving network transmission bandwidth. This study introduces a compression and decompression model tailored for vector curve data, leveraging autoencoder neural networks. Confronting curves of varying data volume and complexities, the model initiates with segmenting, resampling processes and normalizing input vectors. Through the optimization of autoencoder structure and adjustment of the loss function, a high-precision compression-decoding module is achieved. The stability of the data is ensured through closed coordinate differences of arc segment data. Compression and restoration experiments were carried out on the 1∶1 000 000 county-level arc segments in Shanxi, Hunan, and Jiangxi provinces. The analysis reveals that the accuracy of data restoration decreases with decrease in the compression rate. When the compression rate falls below 35%, the accuracy of data restoration exhibits a fluctuating trend. Therefore, a compression rate of 25% is recommended to ensure the required level of accuracy. Comparison with Fourier series and Bézier curve fitting methods indicates advantages in compression accuracy and processing speed within specific compression rate ranges for the proposed model. Additionally, the model highlights the potential of deep learning in extracting geometric features of spatial elements. In summary, this research presents a model for vector spatial data compression based on autoencoder neural networks, demonstrating promising performance and emphasizing the potential of deep learning in spatial feature extraction.

Key words: autoencoder, vector spatial data compression, polyline simplification, map generalization

中图分类号: