测绘学报 ›› 2024, Vol. 53 ›› Issue (8): 1644-1655.doi: 10.11947/j.AGCS.2024.20230258
周梦杰1,2,3(), 阳孟杰1(), 陈慧颖1, 田雨萌1, 万义良1, 夏吉喆4,5
收稿日期:
2023-06-08
发布日期:
2024-09-25
通讯作者:
阳孟杰
E-mail:mengjiezhou@hunnu.edu.cn;mengjiezhou@hunnu.edu.cn;yangmengjie@hunnu.edu.cn
作者简介:
周梦杰(1990—),女,博士,副教授,研究方向为地理信息挖掘与可视化。E-mail:mengjiezhou@hunnu.edu.cn
基金资助:
Mengjie ZHOU1,2,3(), Mengjie YANG1(), Huiying CHEN1, Yumeng TIAN1, Yiliang WAN1, Jizhe XIA4,5
Received:
2023-06-08
Published:
2024-09-25
Contact:
Mengjie YANG
E-mail:mengjiezhou@hunnu.edu.cn;mengjiezhou@hunnu.edu.cn;yangmengjie@hunnu.edu.cn
About author:
ZHOU Mengjie (1990—), female, PhD, associate professor, majors in geographical information mining and visualization. E-mail: mengjiezhou@hunnu.edu.cn
Supported by:
摘要:
地理流表示地理对象在不同地理位置之间有意义的交互或移动。挖掘地理流时空关联模式,对于揭示地理流之间的时空依赖性和异质性,理解地理流的发生机制和时空交互作用具有重要意义。目前,地理流空间关联分析方法日益增多,但鲜有研究考虑地理流的时空耦合特征并关注时间效应对探测模式的影响,准确捕捉地理流之间依赖关系的时空演变趋势仍是当前领域的难点问题。因此,本文扩展点模式时空交叉K函数,提出了地理流的时空交叉K函数,该函数以地理流整体为研究对象,用于探测两类地理流事件之间的时空关联模式。全局时空交叉K函数可探测研究区域中整体地理流关联模式,而局部时空交叉K函数可以识别不遵循全局趋势的在局部尺度上的时空关联情况。本文采用地理流时空交叉K函数的方法对厦门岛巡游车和网约车流数据进行了时空关联分析,揭示了两类车辆流的全局和局部时空竞争格局。全局结果表明,两类车辆呈排斥模式,说明在厦门岛整体上两类车辆之间并未出现激烈的正面竞争;而局部结果显示,在早、午、晚高峰期,巡游车流和网约车流在某些局部区域仍存在竞争,且主要分布在居民区—产业园、居民区—机场、火车站—商圈、商圈—旅游景点等区域之间。
中图分类号:
周梦杰, 阳孟杰, 陈慧颖, 田雨萌, 万义良, 夏吉喆. 面向地理流的时空交叉K函数方法[J]. 测绘学报, 2024, 53(8): 1644-1655.
Mengjie ZHOU, Mengjie YANG, Huiying CHEN, Yumeng TIAN, Yiliang WAN, Jizhe XIA. Spatio-temporal cross K-function for geographical flows[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1644-1655.
[1] | 裴韬, 舒华, 郭思慧, 等. 地理流的空间模式:概念与分类 [J]. 地球信息科学学报, 2020, 22(1): 30-40. |
PEI Tao, SHU Hua, GUO Sihui, et al. The concept and classification of spatial patterns of geographical flow[J]. Journal of Geoinformation Science, 2020, 22(1): 30-40. | |
[2] | ZHEN F, WANG B, CHEN Y. China's city network characteristics based on social network space: an empirical analysis of Sina Micro-blog [J]. Acta Geographica Sinica, 2012, 67(8): 1031-1043. |
[3] | TIZZONI M, BAJARDI P, DECUYPER A, et al. On the use of human mobility proxies for modeling epidemics [J]. PLoS Computational Biology, 2014, 10(7): e1003716. |
[4] | 石岩, 王达, 陈袁芳, 等. 流空间邻近关系约束下的流行病分布空间异常探测方法 [J]. 测绘学报, 2021, 50(6): 777-788. |
SHI Yan, WANG Da, CHEN Yuanfang, et al. An anomaly detection approach from spatio distributions of epidemic based on adjacency constraints in flow space[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(6): 777-788. | |
[5] | 塔娜, 柴彦威. 行为地理学的学科定位与前沿方向[J]. 地理科学进展, 2022, 41(1): 1-15. |
TA Na, CHAI Yanwei. Disciplinary position and research frontiers of behavioral geography[J]. Progress in Geography, 2022, 41(1): 1-15. | |
[6] | CAI J, KWAN M-P. Discovering co-location patterns in multivariate spatial flow data[J]. International Journal of Geographical Information Science, 2022, 36(4): 720-748. |
[7] | SHU Hua, PEI Tao, SONG Ci, et al. L-function of geographical flows [J]. International Journal of Geographical Information Science, 2021, 35(4): 689-716. |
[8] | TAO R, THILL J-C. Flow cross K-function: a bivariate flow analytical method[J]. International Journal of Geographical Information Science, 2019, 33(10): 2055-2071. |
[9] | JIANG Jingyu, WANG Xi, LIU Tianyu, et al. Topological relationship model for geographical flows [J]. Cartography and Geographic Information Science, 2022, 49(6): 528-544. |
[10] | 邓敏, 蔡建南, 杨文涛, 等. 多模态地理大数据时空分析方法 [J]. 地球信息科学学报, 2020, 22(1): 41-56. |
DENG Min, CAI Jiannan, YANG Wentao, et al. Spatio-temporal analysis methods for multi-modal geographic big data[J]. Journal of Geo-information Science, 2020, 22(1): 41-56. | |
[11] | WANG Fahui, HU Yujie, WANG Shuai, et al. Local indicator of colocation quotient with a statistical significance test: examining spatial association of crime and facilities[J]. The Professional Geographer, 2017, 69(1): 22-31. |
[12] | ZHU Di, HUANG Zhou, SHI Li, et al. Inferring spatial interaction patterns from sequential snapshots of spatial distributions [J]. International Journal of Geographical Information Science, 2018, 32(4): 783-805. |
[13] | 刘瑜, 姚欣, 龚咏喜, 等. 大数据时代的空间交互分析方法和应用再论 [J]. 地理学报, 2020, 75(7): 1523-1538. |
LIU Yu, YAO Xin, GONG Yongxi, et al. Analytical methods and applications of spatial interactions in the era of big data [J]. Acta Geographica Sinica, 2020, 75(7): 1523-1538. | |
[14] | HUANG B, WU B, BARRY M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices [J]. International Journal of Geographical Information Science, 2010, 24(3): 383-401. |
[15] | DU Z H, WU S S, KWAN M P, et al. A spatiotemporal regression-kriging model for space-time interpolation: a case study of chlorophyll-a prediction in the coastal areas of Zhejiang, China[J]. International Journal of Geographical Information Science, 2018, 32(10): 1927-1947. |
[16] | LYNCH H J, MOORCROFT P R. A spatiotemporal Ripley's K-function to analyze interactions between spruce budworm and fire in British Columbia, Canada[J]. Canadian Journal of Forest Research, 2008, 38(12): 3112-3119. |
[17] | LI L, CHENG J Q, BANNISTER J, et al. Geographically and temporally weighted co-location quotient: an analysis of spatiotemporal crime patterns in greater Manchester[J]. International Journal of Geographical Information Science, 2022, 36(5): 918-942. |
[18] | MA Xinwei, JI Yanjie, YUAN Yufei, et al. A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data[J]. Transportation Research Part A: Policy and Practice, 2020, 139: 148-173. |
[19] | CAI J N, KWAN M P. Detecting spatial flow outliers in the presence of spatial autocorrelation [J]. Computers, Environment and Urban Systems, 2022, 96: 101833. |
[20] | 秦昆, 喻雪松, 周扬, 等. 全球尺度地理多元流的网络化挖掘及关联分析研究 [J]. 地球信息科学学报, 2022, 24(10): 1911-1924. |
QIN Kun, YU Xuesong, ZHOU Yang, et al. Networked mining and association analysis of geographical multiple flows at a global scale[J]. Journal of Geo-information Science, 2022, 24(10): 1911-1924. | |
[21] | MORAN P A P. Notes on continuous stochastic phenomena[J]. Biometrika, 1950, 37(1/2): 17-23. |
[22] | GETIS A. Spatial filtering in a regression framework: examples using data on urban crime, regional inequality, and government expenditures[M]//New directions in spatial econometrics. Berlin: Springer. 1995: 172-185. |
[23] | GETIS A, ORD J K. The analysis of spatial association by use of distance statistics[J]. Geographical Analysis, 1992, 24(3): 189-206. |
[24] | BERGLUND S, KARLSTRÖM A. Identifying local spatial association in flow data[J]. Journal of Geographical Systems, 1999, 1(3): 219-236. |
[25] | BLACK W R. Network autocorrelation in transport network and flow systems[J]. Geographical Analysis, 1992, 24(3): 207-222. |
[26] | LIU Yu, TONG Daoqin, LIU Xi. Measuring spatial autocorrelation of vectors[J]. Geographical Analysis, 2015, 47(3): 300-319. |
[27] | KAN Z H, KWAN M P, TANG L L. Ripley's K-function for network-constrained flow data[J]. Geographical Analysis, 2022, 54(4): 769-788. |
[28] | TAO R, THILL J C. Spatial cluster detection in spatial flow data[J]. Geographical Analysis, 2016, 48(4): 355-372. |
[29] | GAO Yizhao, LI Ting, WANG Shaowen, et al. A multidimensional spatial scan statistics approach to movement pattern comparison[J]. International Journal of Geographical Information Science, 2018, 32(7): 1304-1325. |
[30] | TAO R, THILL J C. BiFlowLISA: measuring spatial association for bivariate flow data[J]. Computers Environment and Urban Systems, 2020, 83: 101519. |
[31] | ZHOU Mengjie, YANG Mengjie, CHEN Zhe. Flow colocation quotient: measuring bivariate spatial association for flow data[J]. Computers, Environment and Urban Systems, 2023, 99: 101916. |
[32] | YAO Xin, ZHU Di, GAO Yong, et al. A stepwise spatio-temporal flow clustering method for discovering mobility trends[J]. IEEE Access, 2018, 6: 44666-44675. |
[33] | 刘大有, 陈慧灵, 齐红, 等. 时空数据挖掘研究进展 [J]. 计算机研究与发展, 2013, 50(2): 225-239. |
LIU Dayou, CHEN Huiling, QI Hong, et al. Advances in spatiotemporal data mining[J]. Journal of Computer Research and Development, 2013, 50(2): 225-239. | |
[34] | WU Yingcai, WENG Di, DENG Zikun, et al. Towards better detection and analysis of massive spatiotemporal co-occurrence patterns[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3387-3402. |
[35] | YONGMEI Z, SHA G, KUO X, et al. Mining algorithm of spatial-temporal co-occurrence pattern based on vehicle GPS trajectory[C]//Proceedings of 2016 IEEE International Conference on Signal and Image Processing. Beijing: IEEE, 2016. |
[36] | YU Wenhao. Discovering frequent movement paths from taxi trajectory data using spatially embedded networks and association rules[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(3): 855-866. |
[37] | YAN Xiaorui, PEI Tao, SHU Hua, et al. Spatiotemporal flow L-function: a new method for identifying spatiotemporal clusters in geographical flow data[J]. International Journal of Geographical Information Science, 2023, 37(7): 1615-1639. |
[38] | SHEKHAR S, JIANG Z, ALI R, et al. Spatiotemporal data mining: a computational perspective[J]. ISPRS International Journal of Geo-Information, 2015, 4(4): 2306-2338. |
[39] | RIPLEY B D. The second-order analysis of stationary point processes[J]. Journal of Applied probability, 1976, 13(2): 255-266. |
[40] | RIPLEY B D. Modelling spatial patterns[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39(2): 172-192. |
[41] | DIGGLE P J. Statistical analysis of spatial and spatio-temporal point patterns[M]. Boca Raton: CRC press, 2013. |
[42] | WANG D, MIWA T, MORIKAWA T. Interrelationships between traditional taxi services and online ride-hailing: empirical evidence from Xiamen, China[J]. Sustainable Cities and Society, 2022, 83: 103924. |
[1] | 吴华意, 胡秋实, 李锐, 刘朝辉. 城市人口时空分布估计研究进展[J]. 测绘学报, 2022, 51(9): 1827-1847. |
[2] | 刘经南, 罗亚荣, 郭迟, 高柯夫. PNT智能与智能PNT[J]. 测绘学报, 2022, 51(6): 811-828. |
[3] | 韩李涛, 周丽娟, 龚城, 张爱国. 顾及步行习惯的室内导航网络及其生成算法[J]. 测绘学报, 2022, 51(5): 729-738. |
[4] | 方金凤, 孟祥福. 基于LBSN和多图融合的兴趣点推荐[J]. 测绘学报, 2022, 51(5): 739-749. |
[5] | 张睿卓. 基于多源数据的林区电力走廊安全风险评估方法[J]. 测绘学报, 2022, 51(5): 784-784. |
[6] | 夏吉喆, 周颖, 李珍, 李帆, 乐阳, 程涛, 李清泉. 城市时空大数据驱动的新型冠状病毒传播风险评估——以粤港澳大湾区为例[J]. 测绘学报, 2020, 49(6): 671-680. |
[7] | 朱庆, 冯斌, 李茂粟, 陈媚特, 徐肇文, 谢潇, 张叶廷, 刘铭崴, 黄志勤, 冯义从. 面向动态关联数据的高效稀疏图索引方法[J]. 测绘学报, 2020, 49(6): 681-691. |
[8] | 陆川伟, 孙群, 陈冰, 温伯威, 赵云鹏, 徐立. 车辆轨迹数据的道路学习提取法[J]. 测绘学报, 2020, 49(6): 692-702. |
[9] | 尹烁, 闫小明, 晏雄锋. 基于特征边重构的建筑物化简方法[J]. 测绘学报, 2020, 49(6): 703-710. |
[10] | 吴华意, 黄蕊, 游兰, 向隆刚. 出租车轨迹数据挖掘进展[J]. 测绘学报, 2019, 48(11): 1341-1356. |
[11] | 郭庆胜, 刘洋, 李萌, 程晓茜, 何捷, 王慧慧, 魏智威. 基于网格模型的导航道路图渐进式化简方法[J]. 测绘学报, 2019, 48(11): 1357-1368. |
[12] | 吴政, 武鹏达, 李成名. 对等网络下自适应层级的矢量数据时空索引构建方法[J]. 测绘学报, 2019, 48(11): 1369-1379. |
[13] | 王培晓, 张恒才, 王海波, 吴升. ST-CFSFDP:快速搜索密度峰值的时空聚类算法[J]. 测绘学报, 2019, 48(11): 1380-1390. |
[14] | 万子健, 李连营, 杨敏, 周校东. 车辆轨迹数据提取道路交叉口特征的决策树模型[J]. 测绘学报, 2019, 48(11): 1391-1403. |
[15] | 胡光辉, 熊礼阳, 汤国安. DEM地表坡向变率的向量几何计算法[J]. 测绘学报, 2019, 48(11): 1404-1414. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||