测绘学报 ›› 2025, Vol. 54 ›› Issue (7): 1332-1345.doi: 10.11947/j.AGCS.2025.20240337

• 地图学与地理信息 • 上一篇    下一篇

异构图卷积网络支持下的河系自动选取方法

王亚青1,2,3(), 王中辉1,2,3()   

  1. 1.兰州交通大学测绘与地理信息学院,甘肃 兰州 730070
    2.地理国情监测技术应用国家地方联合工程研究中心,甘肃 兰州 730070
    3.甘肃省测绘科学与技术重点实验室,甘肃 兰州 730070
  • 收稿日期:2024-08-19 修回日期:2025-05-06 出版日期:2025-08-18 发布日期:2025-08-18
  • 通讯作者: 王中辉 E-mail:wyq1584816526@163.com;1449041349@qq.com
  • 作者简介:王亚青(2000—),男,硕士生,研究方向为地图综合、地图数据智能处理。E-mail:wyq1584816526@163.com
  • 基金资助:
    国家自然科学基金(41861060)

River network automated selection method based on heterogeneous graph convolutional networks

Yaqing WANG1,2,3(), Zhonghui WANG1,2,3()   

  1. 1.Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
    2.National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China
    3.Key Laboratory of Science and Technology in Surveying & Mapping, Gansu Province, Lanzhou 730070, China
  • Received:2024-08-19 Revised:2025-05-06 Online:2025-08-18 Published:2025-08-18
  • Contact: Zhonghui WANG E-mail:wyq1584816526@163.com;1449041349@qq.com
  • About author:WANG Yaqing (2000—), male, postgraduate, majors in map generalization and intelligent processing of map data. E-mail: wyq1584816526@163.com
  • Supported by:
    The National Natural Science Foundation of China(41861060)

摘要:

河系选取是在大比例尺地图向小比例尺地图变换时,由于空间限制,对重要河流进行优先选取保留,而舍弃其他河流的地图综合过程。现有深度学习方法主要处理单一关系的河系同构图,对河段连接关系信息利用不充分,导致选取准确率低、选取结果拓扑连通性差等问题。为此,本文提出一种异构图卷积网络支持下的河系自动选取方法。首先,将河段作为节点,河段间连接关系作为边,并根据不同的连接关系将边划分为3种类型,构建河系异构图;然后,将选取标签和河系异构图输入RGCN模型进行信息聚合,得到图节点的分类结果;最后,基于分类结果选取河段,实现河系的自动选取。本文选用1∶24 000和1∶250 000两种比例尺的河流数据进行选取试验,结果表明,本文方法在选取准确率上有显著提升,精确率、召回率、F1值和AUC等指标均超过92%;此外还减少了因河段漏选导致的河流断开问题,更好地保持了河网的拓扑连通性和形态相似性。

关键词: 地图综合, 河系选取, 深度学习, 河系异构图, RGCN

Abstract:

River network selection is a map generalization process in which important rivers are selected and other rivers are discarded, due to space limitations when scaling down from large-scale to small-scale maps. Traditional deep learning methods typically focus on homogeneous graphs with a single type of relationship between river segments, which limits their ability to fully utilize the complex connectivity information between segments. This often results in lower selection accuracy and compromised topological connectivity. To address these issues, this paper introduces an automated river network selection method based on heterogeneous graph convolutional networks. In this method, river segments are represented as nodes, and their connections as edges. These edges are categorized into three types based on different relationship characteristics, creating a heterogeneous graph of the river network. The river network data and corresponding selection labels are input into the relational graph convolutional networks (RGCN) model, which aggregates information and classifies the nodes. River segments are selected based on the classification results, achieving automation in the selection process. Experiments using river network data at scales of 1∶24 000 and 1∶250 000 show that the proposed method significantly improves selection accuracy. Key performance metrics, including precision, recall, F1 score and AUC, all exceed 92%. Additionally, the method reduces river network discontinuities and better preserves the topological connectivity and shape similarity of the river network.

Key words: map generalization, river network selection, deep learning, heterogeneous graph of the river network, RGCN

中图分类号: