[1] CHEN Yushi, LIN Zhouhan, ZHAO Xing, et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6):2094-2107. [2] RASTI B, HONG Danfeng, HANG Renlong, et al. Feature extraction for hyperspectral imagery:the evolution from shallow to deep:overview and toolbox[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(4):60-88. [3] 张号逵, 李映, 姜晔楠. 深度学习在高光谱图像分类领域的研究现状与展望[J]. 自动化学报, 2018, 44(6):961-977. ZHANG Haokui, LI Ying, JIANG Yenan. Deep learning for hyperspectral imagery classification:the state of the art and prospects[J]. Acta Automatica Sinica, 2018, 44(6):961-977. [4] 李云飞, 李军, 贺霖. 单样本对卷积神经网络遥感图像时空融合[J]. 遥感学报, 2022, 26(8):1614-1623. LI Yunfei, LI Jun, HE Lin. Convolutional neural network based single image pair method for spatiotemporal fusion[J]. National Remote Sensing Bulletin, 2022, 26(8):1614-1623. [5] 杨星, 池越, 周亚同, 等. 基于光谱-空间注意力双边网络的高光谱图像分类[J/OL]. 遥感学报,[2022-08-10]. http://ygxb.ac.cn/zh/acticle/doi/10.11834/jrs.20210563. YANG Xing, CHI Yue, ZHOU Yatong, et al. Spectral-spatial attention bilateral network for hyperspectral image classification[J/OL]. Journal of Remote Sensing, 2021,[2022-08-10]. http://ygxb.ac.cn/zh/acticle/doi/10.11834/jrs.20210563. [6] 赵伍迪, 李山山, 李安, 等. 结合深度学习的高光谱与多源遥感数据融合分类[J]. 遥感学报, 2021, 25(7):1489-1502. ZHAO Wudi, LI Shanshan, LI An, et al. Deep fusion of hyperspectral images and multi-source remote sensing data for classification with convolutional neural network[J]. National Remote Sensing Bulletin, 2021, 25(7):1489-1502. [7] 魏祥坡, 余旭初, 张鹏强, 等. 联合局部二值模式的CNN高光谱图像分类[J]. 遥感学报, 2020, 24(8):1000-1009. WEI Xiangpo, YU Xuchu, ZHANG Pengqiang, et al. CNN with local binary patterns for hyperspectral images classification[J]. Journal of Remote Sensing, 2020, 24(8):1000-1009. [8] HANG Renlong, LIU Qingshan, HONG Danfeng, et al. Cascaded recurrent neural networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8):5384-5394. [9] ZHOU Feng, HANG Renlong, LIU Qingshan, et al. Hyperspectral image classification using spectral-spatial LSTMs[J]. Neurocomputing, 2019, 328(7):39-47. [10] CHEN Yushi, JIANG Hanlu, LI Chunyang, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10):6232-6251. [11] 刘冰, 余旭初, 张鹏强, 等. 联合空-谱信息的高光谱影像深度三维卷积网络分类[J]. 测绘学报, 2019, 48(1):53-63.DOI:10.11947/j.AGCS.2019.20170578. LIU Bing, YU Xuchu, ZHANG Pengqiang, et al. Deep 3D convolutional network combined with spatial-spectral features for hyperspectral image classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1):53-63.DOI:10.11947/j.AGCS.2019.20170578. [12] 高奎亮, 余旭初, 宋治杭, 等. 联合空谱信息的高光谱影像深度胶囊网络分类[J]. 遥感学报, 2021, 25(6):1257-1269. GAO Kuiliang, YU Xuchu, SONG Zhihang, et al. Deep capsule network combined with spatial-spectral information for hyperspectral image classification[J]. National Remote Sensing Bulletin, 2021, 25(6):1257-1269. [13] KEMKER R, KANAN C. Self-taught feature learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5):2693-2705. [14] ZHANG Mingyang, GONG Maoguo, HE Haibo, et al. Symmetric all convolutional neural-network-based unsupervised feature extraction for hyperspectral images classification[J]. IEEE Transactions on Cybernetics, 2022, 52(5):2981-2993. [15] ZHANG Shuyu, XU Meng, ZHOU Jun, et al. Unsupervised spatial-spectral CNN-based feature learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5524617. [16] MEI Shaohui, JI Jingyu, GENG Yunhao, et al. Unsupervised spatial-spectral feature learning by 3D convolutional autoencoder for hyperspectral classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9):6808-6820. [17] ZHANG Mingyang, GONG Maoguo, MAO Yishun, et al. Unsupervised feature extraction in hyperspectral images based on Wasserstein generative adversarial network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(5):2669-2688. [18] CHEN Ting, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of the 37th International Conference on Machine Learning. New York:ACM Press, 2020:1597-1607. [19] ZHANG Suhua, CHEN Zhikui, WANG Dan, et al. Cross-domain few-shot contrastive learning for hyperspectral images classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. [20] ZHU Mingzhen, FAN Jiayuan, YANG Qihang, et al. SC-EADNet:a self-supervised contrastive efficient asymmetric dilated network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5519517. [21] HOU Sikang, SHI Hongye, CAO Xianghai, et al. Hyperspectral imagery classification based on contrastive learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5521213. [22] ZHAO Lin, LUO Wenqiang, LIAO Qiming, et al. Hyperspectral image classification with contrastive self-supervised learning under limited labeled samples[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:6008205. [23] XU Huilin, HE Wei, ZHANG Liangpei, et al. Unsupervised spectral-spatial semantic feature learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5526714. [24] ZHONG Yanfei, HU Xin, LUO Chang, et al. WHU-Hi:UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF[J]. Remote Sensing of Environment, 2020, 250:112012. [25] HANG Renlong, ZHOU Feng, LIU Qingshan, et al. Classification of hyperspectral images via multitask generative adversarial networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(2):1424-1436. |