[1] 童庆禧,张兵, 张立福.中国高光谱遥感的前沿进展[J].遥感学报,2016,20(5):689-707. TONG Qingxi, ZHANG Bing, ZHANG Lifu. Current progress of hyperspectral remote sensing in China[J]. Journal of Remote Sensing, 2016, 20(5):689-707. [2] ZHONG Y, HU X, LUO C, et al.WHU-Hi:UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF[J]. Remote Sensing of Environment, 2020, 250:112012. [3] LORENZ S, GHAMISI P, KIRSCH M, et al.Feature extraction for hyperspectral mineral domain mapping:a test of conventional and innovative methods[J]. Remote Sensing of Environment, 2021, 252:112129. [4] TONG Fei, ZHANG Yun. Spectral-spatial and cascaded multilayer random forests for tree species classification in airborne hyperspectral images[J].IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-11. [5] HUGHES G. On the mean accuracy of statistical pattern recognizers[J]. IEEE Transactions on Information Theory, 1968, 14(1):55-63. [6] 张良培, 李家艺.高光谱图像稀疏信息处理综述与展望[J].遥感学报,2016,20(5):1091-1101. ZHANG Liangpei, LI Jiayi. Development and prospect of sparse representation-based hyperspectral image processing and analysis[J]. Journal of Remote Sensing, 2016, 20(5):1091-1101. [7] RASTI B, HONG D, HANG R, et al. Feature extraction for hyperspectral imagery:the evolution from shallow to deep:overview and toolbox[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(4):60-88. [8] 黄鸿, 石光耀, 段宇乐, 等. 加权空-谱联合保持嵌入的高光谱遥感影像降维方法[J]. 测绘学报,2019,48(8):1014-1024. HUANG Hong, SHI Guangyao, DUAN Yule, et al. Dimensionality reduction method for hyperspectral images based on weighted spatial-spectral combined preserving embedding[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8):1014-1024. [9] 罗甫林. 高光谱图像稀疏流形学习方法研究[J]. 测绘学报, 2017, 46(3):400.DOI:10.11947/j.AGCS.2017.20160621. LUO Fulin. Sparse manifold learning for hyperspectral imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3):400.DOI:10.11947/j.AGCS.2017.20160621. [10] KUMAR B, DIKSHIT O, GUPTA A, et al.Feature extraction for hyperspectral image classification:a review[J].International Journal of Remote Sensing,2020, 41(16):6248-6287. [11] 余岸竹, 刘冰, 邢志鹏, 等. 面向高光谱影像分类的显著性特征提取方法[J]. 测绘学报,2019,48(8):985-995. DOI:10.11947/j.AGCS.2019.20180499. YU Anzhu, LIU Bing, XING Zhipeng, et al.Salient feature extraction method for hyperspectral image classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8):985-995. DOI:10.11947/j.AGCS.2019.20180499. [12] LI Wan, ZHANG Liangpei, ZHANG Lefei, et al. GPU parallel implementation of isometric mapping for hyperspectral classification[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9):1532-1536. [13] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science (New York, N Y), 2000, 290(5500):2323-2326. [14] 杨秋兰, 万晓霞, 肖根生. 基于偏最小二乘法的多光谱降维算法[J]. 激光与光电子学进展, 2020, 57(1):013003. YANG Qiulan, WAN Xiaoxia, XIAO Gensheng. Multispectral dimension reduction algorithm based on partial least squares[J]. Laser & Optoelectronics Progress, 2020, 57(1):013003. [15] ZABALZA J, REN J, YANG M, et al.Novel folded-PCA for improved feature extraction and data reduction with hyperspectral imaging and SAR in remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93:112-122. [16] ZABALZA J, REN Jinchang, REN Jie, et al. Structured covariance principal component analysis for real-time onsite feature extraction and dimensionality reduction in hyperspectral imaging[J]. Applied Optics, 2014, 53(20):4440. [17] JIA Sen, TANG Guihua, ZHU Jiasong, et al. A novel ranking-based clustering approach for hyperspectral band selection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1):88-102. [18] 王密,何鲁晓,程宇峰,等。自适应高斯滤波与SFIM模型相结合的全色多光谱影像融合方法[J]. 测绘学报,2018,47(1):82-90. DOI:10.11947/j.AGCS.2018.20170421. WANG Mi, HE Luxiao, CHENG Yufeng, et al. Panchromatic and multi-spectral fusion method combined with adaptive Gaussian filter and SFIM model[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(1):82-90. DOI:10.11947/j.AGCS.2018.20170421. [19] QIAO T, YANG Z, REN J, et al.Joint bilateral filtering and spectral similarity-based sparse representation:a generic framework for effective feature extraction and data classification in hyperspectral imaging[J]. Pattern Recognition, 2018, 77:316-328. [20] GUO Xian, HUANG Xin, ZHANG Liangpei. Three-dimensional wavelet texture feature extraction and classification for multi/hyperspectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12):2183-2187. [21] GOLYANDINA N, ZHIGLIAVSKI A. Singular spectrum analysis for time series[M].New York:Plenum Press, 2010. [22] ZABALZA J, REN J, WANG Z, et al. Singular spectrum analysis for effective feature extraction in hyperspectral imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(11):1886-1890. [23] PAOLETTI M E, HAUT J M, PLAZA J, et al. Deep learning classifiers for hyperspectral imaging:a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 158:279-317. [24] 张良培, 何江, 杨倩倩, 等. 数据驱动的多源遥感信息融合研究进展[J]. 测绘学报,2022,51(7):1317-1337. DOI:10.11947/j.AGCS.2022.20220171. ZHANG Liangpei, HE Jiang, YANG Qianqian, et al. Data-driven multi-source remote sensing data fusion:progress and challenges[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1317-1337. DOI:10.11947/j.AGCS.2022.20220171. [25] ZHOU Peicheng, HAN Junwei, CHENG Gong, et al. Learning compact and discriminative stacked autoencoder for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7):4823-4833. [26] XU Yonghao, ZHANG Liangpei, DU Bo, et al. Spectral-spatial unified networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10):5893-5909. [27] HONG Danfeng, GAO Lianru, YAO Jing, et al. Graph convolutional networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7):5966-5978. [28] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need[EB/OL].[2017-06-12].https://arxiv.org/abs/1706.03762. [29] LI Xian, DING Mingli, PIŽURICA A. Deep feature fusion via two-stream convolutional neural network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4):2615-2629. [30] AHMAD M, KHAN A M, MAZZARA M, et al. A fast and compact 3D CNN for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. [31] ZHONG Zilong, LI J, LUO Zhiming, et al. Spectral-spatial residual network for hyperspectral image classification:a 3D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2):847-858. [32] SUN Yifan, LIU Bing, YU Xuchu, et al. Resolution reconstruction classification:fully octave convolution network with pyramid attention mechanism for hyperspectral image classification[J]. International Journal of Remote Sensing, 2022, 43(6):2076-2105. [33] HE J, YUAN Q, LI J, et al.DsTer:a dense spectral transformer for remote sensing spectral super-resolution[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 109:102773. [34] XUE Zhixiang, TAN Xiong, YU Xuchu, et al. Deep hierarchical vision transformer for hyperspectral and LiDAR data classification[J]. IEEE Transactions on Image Processing, 2022, 31:3095-3110. [35] HONG Danfeng, HAN Zhu, YAO Jing, et al. SpectralFormer:rethinking hyperspectral image classification with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-15. [36] YU Haoyang, XU Zhen, ZHENG Ke, et al. MSTNet:amultilevel spectral-spatial transformer network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-13. [37] 刘冰, 左溪冰, 谭熊, 等. 高光谱影像分类的深度少样例学习方法[J]. 测绘学报,2020,49(10):1331-1342. DOI:10.11947/j.AGCS.2020.20190486. LIU Bing, ZUO Xibing, TAN Xiong, et al. A deep few-shot learning algorithm for hyperspectral image classification[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10):1331-1342. DOI:10.11947/j.AGCS.2020.20190486. [38] 孙一帆, 余旭初, 谭熊, 等. 面向小样本高光谱影像分类的轻量化关系网络[J]. 武汉大学学报(信息科学版), 2022, 47(8):1336-1348. SUN Yifan, YU Xuchu, TAN Xiong, et al. Lightweight relational network for small sample hyperspectral image classification[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8):1336-1348. [39] CHEN Yushi, ZHU Kaiqiang, ZHU Lin, et al. Automatic design of convolutional neural network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9):7048-7066. [40] ZABALZA J, REN Jinchang, ZHENG Jiangbin, et al. Novel two-dimensional singular spectrum analysis for effective feature extraction and data classification in hyperspectral imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8):4418-4433. [41] FU Hang, ZHANG Aizhu, SUN Genyun, et al. A novel band selection and spatial noise reduction method for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-13. [42] FU Hang, SUN Genyun, REN Jinchang, et al. Fusion of PCA and segmented-PCA domain multiscale 2-D-SSA for effective spectral-spatial feature extraction and data classification in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-14. [43] YAN Yijun, REN Jinchang, LIU Qiaoyuan, et al. PCA-domain fused singular spectral analysis for fast and noise-robust spectral-spatial feature mining in hyperspectral classification[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20:1-5. [44] GOLYANDINA N, KOROBEYNIKOV A, ZHIGLJAVSKY A. SSA for multivariate time series[M] Berlin:Springer, 2018:189-229. [45] ZABALZA J, REN Jinchang, WANG Zheng, et al. Fast implementation of singular spectrum analysis for effective feature extraction in hyperspectral imaging[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6):2845-2853. [46] QIAO Tong, REN Jinchang, WANG Zheng, et al. Effective denoising and classification of hyperspectral images using curvelet transform and singular spectrum analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1):119-133. [47] ZABALZA J, QING C, YUEN P, et al.Fast implementation of two-dimensional singular spectrum analysis for effective data classification in hyperspectral imaging[J]. Journal of the Franklin Institute, 2018, 355(4):1733-1751. [48] LIN Yuxin, LING B W K, HU Lingyue, et al. Hyperspectral image enhancement by two dimensional quaternion valued singular spectrum analysis for object recognition[J]. Remote Sensing, 2021, 13(3):405. [49] FU Hang, SUN Genyun, ZABALZA J, et al. A novel spectral-spatial singular spectrum analysis technique for near real-time in situ feature extraction in hyperspectral imaging[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:2214-2225. [50] MA Ping, REN Jinchang, ZHAO Huimin, et al. Multiscale 2-D singular spectrum analysis and principal component analysis for spatial-spectral noise-robust feature extraction and classification of hyperspectral images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14:1233-1245. [51] 付航, 孙根云, 赵云华, 等. 多尺度超像素分割和奇异谱分析的高光谱影像分类[J]. 中国图象图形学报, 2021, 26(8):1978-1993. FU Hang, SUN Genyun, ZHAO Yunhua, et al. Combining multiscale superpixel segmentation and singular spectral analysis for hyperspectral image classification[J]. Journal of Image and Graphics, 2021, 26(8):1978-1993. [52] SUBUDHI S, PATRO R, BISWAL P K, et al. Superpixel-based singular spectrum analysis for effective spatial-spectral feature extraction[J]. Applied Sciences, 2021, 11(22):10876. [53] SUN Genyun, FU Hang, REN Jinchang, et al. SpaSSA:superpixelwise adaptive SSA for unsupervised spatial-spectral feature extraction in hyperspectral image[J]. IEEE Transactions on Cybernetics, 2022, 52(7):6158-6169. |