测绘学报 ›› 2023, Vol. 52 ›› Issue (7): 1139-1147.doi: 10.11947/j.AGCS.2023.20220540

• 高光谱遥感技术专刊 • 上一篇    下一篇

基于层级Transformer的高光谱图像分类方法

张艺超1,2, 郑向涛1,3, 卢孝强1,3   

  1. 1. 中国科学院西安光学精密机械研究所光谱成像技术重点实验室, 陕西 西安 710119;
    2. 中国科学院大学, 北京 100049;
    3. 福州大学物理与信息工程学院, 福建 福州 350100
  • 收稿日期:2022-08-25 修回日期:2023-04-16 发布日期:2023-07-31
  • 通讯作者: 郑向涛 E-mail:xiangtaoz@gmail.com
  • 作者简介:张艺超(1992-),男,博士,研究方向为计算机视觉、人工智能和遥感图像处理。E-mail:yczhang0819@gmail.com
  • 基金资助:
    国家自然科学基金(62271484);国家杰出青年科学基金(61925112);陕西省重点研发计划(2023-YBGY-225)

Hyperspectral image classification method based on hierarchical transformer network

ZHANG Yichao1,2, ZHENG Xiangtao1,3, LU Xiaoqiang1,3   

  1. 1. Key Laboratory of Spectral Imaging Technology CAS, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. College of Physics and Information Engineering, Fuzhou University, Fuzhou 350100, China
  • Received:2022-08-25 Revised:2023-04-16 Published:2023-07-31
  • Supported by:
    The National Natural Science Foundation of China (No. 62271484); The National Science Fund for Distinguished Young Scholars (No. 61925112); The Key Research and Development Program of Shaanxi (No. 2023-YBGY-225)

摘要: 高光谱图像分类将每个像素分类至预设的地物类别,对环境测绘等各类地球科学任务有着至关重要的意义。近年来,学者们尝试利用深度学习框架进行高光谱图像分类,取得了令人满意的效果。然而这些方法在光谱特征的提取上仍存在一定缺陷。本文提出一个基于自注意力机制的层级融合高光谱图像分类框架(hierarchical self-attention network,HSAN)。首先,构建跳层自注意力模块进行特征学习,利用Transformer结构中的自注意力机制捕获上下文信息,增强有效信息贡献。然后,设计层级融合方式,进一步缓解特征学习过程中的有效信息损失,增强各层级特征联动。在Pavia University及Houston2013数据集上的试验表明,本文提出的框架相较于其他高光谱图像分类框架具有更好的分类性能。

关键词: 高光谱图像分类, Transformer, 自注意力机制, 层级融合

Abstract: Hyperspectral image classification, which assigns each pixel to predefined land cover categories, is of crucial importance in various Earth science tasks such as environmental mapping and other related fields. In recent years, scholars have attempted to utilize deep learning frameworks for hyperspectral image classification and achieved satisfactory results. However, these methods still have certain deficiencies in extracting spectral features. This paper proposes a hierarchical self-attention network (HSAN) for hyperspectral image classification based on the self-attention mechanism. Firstly, a skip-layer self-attention module is constructed for feature learning, leveraging the self-attention mechanism of Transformer to capture contextual information and enhance the contribution of relevant information. Secondly, a hierarchical fusion method is designed to further alleviate the loss of relevant information during the feature learning process and enhance the interplay of features at different hierarchical levels. Experimental results on the Pavia University and Houston2013 datasets demonstrate that the proposed framework outperforms other state-of-the-art hyperspectral image classification frameworks.

Key words: hyperspectral image classification, transformer, self-attention mechanism, hierarchical fusion

中图分类号: