[1] 童庆禧, 张兵, 张立福. 中国高光谱遥感的前沿进展[J]. 遥感学报, 2016, 20(5): 689-707. TONG Qingxi, ZHANG Bing, ZHANG Lifu. Current progress of hyperspectral remote sensing in China[J]. Journal of Remote Sen-sing, 2016, 20(5): 689-707. [2] WANG Kexian, ZHENG Shunyi, LI Rui, et al.A deep double-channel dense network for hyperspectral image classifica-tion[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 46-62. [3] HUGHES G. On the mean accuracy of statistical pattern recognizers[J]. IEEE Transactions on Information Theory, 1968, 14(1): 55-63. [4] 谷雨, 徐英, 郭宝峰. 融合空谱特征和集成超限学习机的高光谱图像分类[J]. 测绘学报, 2018, 47(9): 1238-1249.DOI: 10.11947/j.AGCS.2018.20170476. GU Yu, XU Ying, GUO Baofeng. Hyperspectral image classification by combination of spatial-spectral features and ensemble extreme learning machines[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9): 1238-1249.DOI: 10.11947/j.AGCS.2018.20170476. [5] 张兵. 高光谱图像处理与信息提取前沿[J]. 遥感学报, 2016, 20(5):1062-1090. ZHANG Bing. Advancement of hyperspectral image processing and information extraction[J]. Journal of Remote Sensing, 2016, 20(5):1062-1090. [6] ZHENG Xiangtao, YUAN Yuan, LU Xiaoqiang. Dimensionality reduction by spatial-spectral preservation in selected bands[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9): 5185-5197. [7] HANG Renlong, LIU Qingshan. Dimensionality reduction of hyperspectral image using spatial regularized local graph discriminant embedding[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(9): 3262-3271. [8] SUN Weiwei, DU Qian. Hyperspectral band selection: a review[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(2): 118-139. [9] 张红, 吴智伟, 王继成, 等. 高光谱图像分类的Wasserstein配置熵非监督波段选择方法[J]. 测绘学报, 2021, 50(3): 405-415.DOI: 10.11947/j.AGCS.2021.20200006. ZHANG Hong, WU Zhiwei, WANG Jicheng, et al. Unsupervised band selection for hyperspectral image classification using the Wasserstein metric-based configuration entropy[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(3): 405-415.DOI: 10.11947/j.AGCS.2021.20200006. [10] CHANG C I, DU Q, SUN T L, et al. A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(6): 2631-2641. [11] CHANG C I, WANG S. Constrained band selection for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6): 1575-1585. [12] XU Buyun, LI Xihai, HOU Weijun, et al. A similarity-based ranking method for hyperspectral band selection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9585-9599. [13] AHMAD M, HAQ I, MUSHTAQ Q, et al. A new statistical approach for band clustering and band selection using K-means clustering[J]. International Journal of Engineering Technology, 2011, 3(6): 606-614. [14] MARTÍNEZ-USÓMARTINEZ-USO A, PLA F, SOTOCA J M, et al. Clustering-based hyperspectral band selection using information measures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(12): 4158-4171. [15] WANG Qi, ZHANG Fahong, LI Xuelong.Optimal clustering framework for hyperspectral band selection[EB/OL].[2023-02-10]. https://arxiv.org/abs/1904.13036.pdf. [16] WANG Jun, TANG Chang, ZHENG Xiao, et al.Graph regularized spatial-spectral subspace clustering for hyperspectral band selection[J]. Neural Networks, 2022, 153: 292-302. [17] ZHANG Aizhu, MA Ping, LIU Sihan, et al. Hyperspectral band selection using crossover-based gravitational search algorithm[J]. IET Image Processing, 2019, 13(2): 280-286. [18] GENG Xiurui, SUN Kang, JI Luyan, et al. A fast volume-gradient-based band selection method for hyperspectral image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 7111-7119. [19] WANG Qi, ZHANG Fahong, LI Xuelong. Hyperspectral band selection via optimal neighborhood reconstruction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(12): 8465-8476. [20] WANG Qi, LI Qiang, LI Xuelong. Hyperspectral band selection via adaptive subspace partition strategy[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(12): 4940-4950. [21] SUN He, REN Jinchang, ZHAO Huimin, et al. Adaptive distance-based band hierarchy (ADBH) for effective hyperspectral band selection[J]. IEEE Transactions on Cybernetics, 2022, 52(1): 215-227. [22] WANG Qi, LI Qiang, LI Xuelong. A fast neighborhood grouping method for hyperspectral band selection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(6): 5028-5039. [23] CAI Yaoming, LIU Xiaobo, CAI Zhihua. BS-nets: an end-to-end framework for band selection of hyperspectral image[J]. IEEE Tran-sactions on Geoscience and Remote Sensing, 2020, 58(3): 1969-1984. [24] TSCHANNERL J, REN Jinchang, ZABALZA J, et al. Segmented autoencoders for unsupervised embedded hyperspectral band selection[C]//Proceedings of the 7th European Workshop on Visual Information Processing. Tampere:IEEE, 2018: 1-6. [25] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496. [26] SUN Kang, GENG Xiurui, JI Luyan. Exemplar component analysis: a fast band selection method for hyperspectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5): 998-1002. [27] JIA Sen, TANG Guihua, ZHU Jiasong, et al. A novel ranking-based clustering approach for hyperspectral band selection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1): 88-102. [28] LUO Xiaoyan, XUE Rui, YIN Jihao. Information-assisted density peak index for hyperspectral band selection[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1870-1874. [29] LI Qiang, WANG Qi, LI Xuelong. An efficient clustering method for hyperspectral optimal band selection via shared nearest neighbor[J]. Remote Sensing, 2019, 11(3): 350. [30] YANG Rongchao, KAN Jiangming. An unsupervised hyperspectral band selection method based on shared nearest neighbor and correlation analysis[J]. IEEE Access, 2019, 7: 185532-185542. [31] GUO Zhishuai, HUANG Tianyi, CAI Zhiling, et al. A new local density for density peak clustering[C]//Proceedings of 2018 Pacific-Asia Conference on Knowledge Discovery and Data Mining.Cham: Springer,2018: 426-438. [32] KORN F, MUTHUKRISHNAN S. Influence sets based on reverse nearest neighbor queries[J]. ACM Sigmod Record, 2000, 29(2): 201-212. [33] JARVIS R A, PATRICK E A. Clustering using a similarity measure based on shared near neighbors[J]. IEEE Transactions on Computers, 1973, 100(11): 1025-1034. [34] ERTOZ L, STEINBACH M, KUMAR V. A new shared nearest neighbor clustering algorithm and its applications[C]//Proceedings of 2002 Workshop on Clustering High Dimensional Data and Its Applications at 2nd SIAM International Conference on Data Mining.[S.l.]:IEEE,2002. [35] VAZQUEZ-FERNANDEZ E, DACAL-NIETO A, MARTIN F, et al. Entropy of gabor filtering for image quality assessment[C]//Proceedings of 2010 International Conference Image Analysis and Recognition.Berlin: Springer,2010: 52-61. [36] 赵海士, 路来君, 杨晨. 一种基于图像熵的密度峰值聚类波段选择方法[J]. 吉林大学学报(理学版), 2017, 55(2): 376-378. ZHAO Haishi, LU Laijun, YANG Chen. A method for density peaks clustering band selection based on image entropy[J]. Journal of Jilin University (Science Edition), 2017, 55(2): 376-378. |