测绘学报 ›› 2021, Vol. 50 ›› Issue (10): 1358-1369.doi: 10.11947/j.AGCS.2021.20200155

• 摄影测量学与遥感 • 上一篇    下一篇

高光谱影像小样本分类的图卷积网络方法

左溪冰1, 刘冰1, 余旭初1, 张鹏强1, 高奎亮1, 朱恩泽2   

  1. 1. 信息工程大学, 河南 郑州 450001;
    2. 武警安徽省总队机动支队, 安徽 合肥 230041
  • 收稿日期:2020-04-22 修回日期:2021-07-15 发布日期:2021-11-09
  • 通讯作者: 刘冰 E-mail:liubing220524@126.com
  • 作者简介:左溪冰(1996-),男,硕士生,主要研究方向为机器学习与高光谱图像处理。E-mail:zuoxibing1015@163.com
  • 基金资助:
    国家自然科学基金(41801388)

Graph convolutional network method for small sample classification of hyperspectral images

ZUO Xibing1, LIU Bing1, YU Xuchu1, ZHANG Pengqiang1, GAO Kuiliang1, ZHU Enze2   

  1. 1. Information Engineering University, Zhengzhou 450001, China;
    2. Anhui Provincial Armed Police Corps Mobile Detachment, Hefei 230041, China
  • Received:2020-04-22 Revised:2021-07-15 Published:2021-11-09
  • Supported by:
    The National Natural Science Foundation of China (No. 41801388)

摘要: 现有的基于卷积神经网络的高光谱影像分类方法通常对影像的规则正方形区域进行卷积,无法普遍适应具有不同地物分布和几何外观的影像局部区域,因此在小样本情况下的分类性能较差,而图卷积网络能对图拓扑信息所代表的不规则影像区域进行卷积。为此,本文提出基于图卷积网络的高光谱影像分类方法。该方法在构建拓扑图的过程中考虑了影像的空间光谱信息,并利用图卷积网络聚合邻居节点的特征信息。在Pavia大学、Indian Pines和Salinas 3个数据集上的试验结果表明,该方法能在训练样本较少的情况下取得较高的分类精度。

关键词: 高光谱影像分类, 局部二值模式, 图卷积网络, 小样本

Abstract: Existing based on convolutional neural network classification method of hyperspectral images usually rules of the square area of image convolution, not widely adapt to different terrain local area distribution and geometry appearance of the image, therefore, under the condition of small sample classification performance is poorer, and figure convolution can network topology information on the map represent irregular image area of the convolution. Therefore, a hyperspectral image classification method based on graph convolution network is proposed. In this method, the spatial spectral information of the image is considered in the process of constructing the graph, and the feature information of the neighbor node is aggregated by the graph convolution network. Experimental results on three data sets, Pavia university, Indian Pines and Salinas, show that this method can achieve a high classification accuracy with a small number of training samples.

Key words: hyperspectral image classification, local binary patterns, graph convolutional network, small sample

中图分类号: