测绘学报 ›› 2021, Vol. 50 ›› Issue (10): 1370-1379.doi: 10.11947/j.AGCS.2021.20200482

• 摄影测量学与遥感 • 上一篇    下一篇

多光谱光学遥感影像水体提取模型

邓开元, 任超   

  1. 桂林理工大学测绘地理信息学院, 广西 桂林 541004
  • 收稿日期:2020-09-23 修回日期:2021-07-25 发布日期:2021-11-09
  • 通讯作者: 任超 E-mail:renchao@glut.edu.cn
  • 作者简介:邓开元(1994-),男,硕士生,研究方向为遥感图像算法。E-mail:ytkz11@163.com
  • 基金资助:
    国家自然科学基金(42064003)

Water extraction model of multispectral optical remote sensing image

DENG Kaiyuan, REN Chao   

  1. School of Surveying Mapping and Geographic Information, Guilin University of Technology, Guilin 541004, China
  • Received:2020-09-23 Revised:2021-07-25 Published:2021-11-09
  • Supported by:
    The National Natural Science Foundation of China (No. 42064003)

摘要: 地表水监测是遥感的重要基础应用。光学遥感水体提取的原理是基于不同的地物具有不同的光谱反射特性,某些地物(冰雪、阴影、云)因为与水体具有相似的反射特性导致提取分类失败。本文针对传统水体指数在水体提取时出现错分、漏分的问题,提出一种归一化多波段水体指数NDMBWI。分别用3个试验对本文指数的稳定性进行测试。试验1的区域为西藏林芝地区,数据源为同一时相的Landsat 8、Sentinel 2卫星影像,试验结果验证了本文指数抑制冰雪的能力,本文指数的Kappa系数为0.86、总体精度为0.93、错分误差为0.03、漏分误差为0.12、制图精度为0.97、生产者精度为0.88,均优于已有的指数。试验2的数据源为高分一号,以香港迪士尼为试验区域,在存在少量云的环境下进行水体提取,证明了本文指数能抑制云及其云下阴影。试验3提取了多个地区的水体,验证了本文水体指数的稳定性。本文使用多源光学遥感影像验证了NDMBWI的可行性,不需额外借助辅助数据,即可排除雪、云、阴影的影响,能够更加有效地自动化提取水体,可推广到海岸带资源研究、冰川变化、内陆湖泊变化等领域。

关键词: 遥感, 光学遥感影像, 水体指数, 水资源, 水体提取

Abstract: Accurate monitoring of surface water is an important basic application of remote sensing. The principle of optical remote sensing water extraction is based on different ground features having different spectral reflection characteristics. Some ground features (ice, snow, shadows, clouds) have similar reflection characteristics to water bodies, which leads to the failure of extraction and classification. Aiming at the problem of misclassification and omission of traditional water body index in water body extraction, this paper proposes a normalized difference multi-band water index model. This paper uses two experiments to test the stability of the new index. The area of experiment 1 is the Linzhi area of Tibet. The data source is Landsat 8 and Sentinel 2 satellite images in the same time phase. The experimental results verify the ability of the new index to suppress snow and ice. The Kappa coefficient of the new index is 0.86, the overall accuracy is 0.93, and the misclassification error is 0.03, the omission error is 0.12, the drawing accuracy is 0.97, and the producer accuracy is 0.88, which are better than the existing index. The data source of experiment 2 was GF-1, and Hong Kong Disneyland was used as the experimental area. Experiment 3 extracted water bodies in multiple regions and verified the stability of the water body index in this paper. Water extraction was performed in an environment with a small amount of clouds, which proved that the new index can suppress clouds and their shadows. This paper uses multi-source optical remote sensing image to verify the feasibility of the new index. Without additional auxiliary data, the influence of snow, cloud and shadow can be eliminated, and the water can be more effectively and automatically extracted, which can be extended to coastal resource research, glacier change, inland lake change and other fields.

Key words: remote sensing, optical remote sensing image, water index, water resources, water extract

中图分类号: