测绘学报 ›› 2025, Vol. 54 ›› Issue (12): 2247-2261.doi: 10.11947/j.AGCS.2025.20250156

• 摄影测量学与遥感 • 上一篇    下一篇

基于耦合神经P系统与区块链的遥感影像零水印版权保护方法

侯昭阳1,2,3(), 闫浩文1,2,3(), 张黎明1,2,3, 马荣娟1,2,3, 屈睿涛1,2,3   

  1. 1.兰州交通大学测绘与地理信息学院,甘肃 兰州 730070
    2.地理国情监测技术应用国家地方联合工程研究中心,甘肃 兰州 730070
    3.甘肃省测绘科学与技术重点实验室,甘肃 兰州 730070
  • 收稿日期:2025-04-28 修回日期:2025-11-16 出版日期:2026-01-15 发布日期:2026-01-15
  • 通讯作者: 闫浩文 E-mail:13230085@stu.lzjtu.edu.cn;yanhw@lzjtu.edu.cn
  • 作者简介:侯昭阳(1996—),男,博士生,研究方向为空间数据安全。 E-mail:13230085@stu.lzjtu.edu.cn
  • 基金资助:
    国家自然科学基金(42271430; 42371463);甘肃省委组织部重点人才项目(2025RCXM012)

Zero-watermark copyright protection method for remote sensing images based on coupled neural P system and blockchain

Zhaoyang HOU1,2,3(), Haowen YAN1,2,3(), Liming ZHANG1,2,3, Rongjuan MA1,2,3, Ruitao QU1,2,3   

  1. 1.Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
    2.National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China
    3.Gansu Provincial Key Laboratory of Science and Technology in Surveying & Mapping, Lanzhou 730070, China
  • Received:2025-04-28 Revised:2025-11-16 Online:2026-01-15 Published:2026-01-15
  • Contact: Haowen YAN E-mail:13230085@stu.lzjtu.edu.cn;yanhw@lzjtu.edu.cn
  • About author:HOU Zhaoyang (1996—), male, PhD candidate, majors in spatial data security. E-mail: 13230085@stu.lzjtu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42271430; 42371463);Key Talent Project of Gansu Provincial Organization Department(2025RCXM012)

摘要:

当前主流零水印方法对遥感影像特有的光谱-空间多维特征挖掘存在不足,面对针对性攻击时稳健性较差,且依赖第三方知识产权管理机构,存在数据被篡改风险和交易互信度低的问题。为此,本文提出一种基于耦合神经P系统与区块链的遥感影像零水印版权保护方法。首先,采用非下采样剪切波变换对遥感影像的R、G、B波段分别进行多尺度分解得到相应的低频分量。其次,构建多层感知的耦合神经P系统模型,模拟神经元的耦合交互关系,挖掘各低频分量的时空动态特征;同时,引入多尺度形态梯度对模型的外部输入进行优化,以增强特征的空间相关性。然后,利用非对称Tent映射生成加密特征图像,并通过置乱与异或操作构建零水印。最后,结合Hyperledger Fabric和星际文件系统构建去中心化版权注册框架,通过智能合约实现版权信息的链上存证与自动验证。试验结果表明,在面对不同强度的几何攻击、非几何攻击及其组合攻击时,本文方法的归一化相关系数均稳定保持在0.99以上,展现出了较高的稳健性与抗攻击能力。

关键词: 遥感影像, 区块链, 耦合神经P系统, 零水印, 版权保护

Abstract:

Currently, mainstream zero-watermark approaches fail to adequately capture the unique spectral-spatial multidimensional characteristics of remote sensing images. This limitation renders them vulnerable to targeted attacks. Additionally, their reliance on third-party intellectual property management organizations introduces potential risks of data tampering and undermines mutual trust in transactions. To this end, a zero-watermark copyright protection method for remote sensing images based on coupled neural P system and blockchain is proposed. Firstly, the non-subsampled shearlet transform is used to obtain the corresponding low-frequency components by multi-scale decomposition of the R, G, and B bands of the remote sensing image, respectively. Secondly, a coupled neural P system model of multilayer perception is constructed to simulate the coupled interaction of neurons to extract the spatiotemporal dynamic features of each low-frequency component, and the external inputs of the model are optimized according to the multi-scale morphological gradient to enhance the spatial correlation of the features. Thirdly, an encrypted feature image is generated using an asymmetric Tent map, which is then scrambled and subjected to XOR operations to form the zero-watermark. Finally, a decentralized copyright registration framework is established by integrating Hyperledger Fabric and the Inter Planetary File System. This framework leverages smart contracts to facilitate the on-chain storage and automated verification of copyright information. The experimental results show that the normalized correlation coefficient of the proposed method stably stays above 0.99 in the face of different degrees of geometric, non-geometric, and combinatorial attacks, demonstrating high robustness and attack resistance.

Key words: remote sensing images, blockchain, coupled neural P system, zero-watermark, copyright protection

中图分类号: