
测绘学报 ›› 2025, Vol. 54 ›› Issue (12): 2233-2246.doi: 10.11947/j.AGCS.2025.20250293
张津1(
), 冯凡1(
), 戴晨光1, 张振超1, 于英1, 刘冰2
收稿日期:2025-07-17
修回日期:2025-11-13
出版日期:2026-01-15
发布日期:2026-01-15
通讯作者:
冯凡
E-mail:zhangjrs0802@163.com;fengrs1991@163.com
作者简介:张津(1994—),女,博士生,主要研究方向为深度学习、遥感图像分类。 E-mail:zhangjrs0802@163.com
基金资助:
Jin ZHANG1(
), Fan FENG1(
), Chenguang DAI1, Zhenchao ZHANG1, Ying YU1, Bing LIU2
Received:2025-07-17
Revised:2025-11-13
Online:2026-01-15
Published:2026-01-15
Contact:
Fan FENG
E-mail:zhangjrs0802@163.com;fengrs1991@163.com
About author:ZHANG Jin (1994—), female, PhD candidate, majors in deep learning and remote sensing image classification. E-mail: zhangjrs0802@163.com
Supported by:摘要:
高光谱图像分类是实现地物要素精细识别的关键技术。随着成像技术发展,无人机平台获取的高光谱图像空间分辨率不断提升,给地物精细分类带来了新的机遇和挑战。现有深层网络在小样本条件下对高空间分辨率高光谱图像特征学习不全面。针对以上问题,本文提出了一种针对卷积神经网络(CNN)和ViT混合特征的优化方法,包括自适应空谱特征学习、双向特征整合和多段特征交互增强3个方面。首先,将多尺度3D空谱特征和局部2D自注意力特征纳入级联残差结构,完成全局-局部多尺度空谱特征提取,增强特征的丰富性。然后,从两个方向整合空间特征和通道特征,提取两个维度的相关性,实现对CNN和ViT提取特征的补充和增强。将上述多段特征融合后,输入分解二阶池化层,解决多段特征之间差异大、缺乏交互的问题。最后,将细粒度融合特征输入全连接层,完成分类。在3个高空间分辨率高光谱图像数据集LongKou、HanChuan、HongHu上进行了小样本分类试验。每类地物仅使用5个样本训练模型,本文方法分类精度分别为94.00%、83.24%和87.63%,验证了本文方法在小样本条件下的有效性。
中图分类号:
张津, 冯凡, 戴晨光, 张振超, 于英, 刘冰. 基于CNN-ViT混合特征优化的小样本高光谱图像分类[J]. 测绘学报, 2025, 54(12): 2233-2246.
Jin ZHANG, Fan FENG, Chenguang DAI, Zhenchao ZHANG, Ying YU, Bing LIU. Small-sample classification of hyperspectral images based on mixed CNN-ViT feature optimization[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2233-2246.
表1
LWCT方法各部分参数情况"
| 类别 | 模块名 | 输出维度 | 核尺寸 | 个数 |
|---|---|---|---|---|
| 模型 | Input | 15×15×16 | ||
| 输入 | Conv3D-BN-ReLU | 15×15×16,24 | 3×3×3 | 24 |
| 3D空谱特征 学习-1 | MultiRes3D-1 | 15×15×16,24 | 1×1×7 | 24 |
| 1×1×3 | 4,8,12 | |||
| LWSA-1 | 15×15×16,24 | |||
| Add-1 | 15×15×16,24 | |||
| Reshape-1 | 15×15×384 | |||
| 3D空谱特征 学习-2 | MultiRes3D-2 | 15×15×16,24 | 7×7×1 | 24 |
| 3×3×1 | 4,8,12 | |||
| LWSA-2 | 15×15×16,24 | |||
| Add-2 | 15×15×16,24 | |||
| Reshape-2 | 15×15×384 | |||
| 2D重组特征 整合 | 2D-Mixer | 225×128 | ||
| Reshape-3 | 15×15×128 | |||
| Concatenate | 15×15×896 | |||
| 多段特征 交互 | FSOP | 2664 | ||
| 模型 | Flatten | 2664 | ||
| 输出 | FC-Softmax | 地物类别数 |
表5
HH数据集样本划分情况"
| 序号 | 地物名称 | 标记样本数 | 训练样本数 | 测试样本数 |
|---|---|---|---|---|
| 1 | 红色屋顶 | 14 041 | 5 | 14 036 |
| 2 | 路 | 3512 | 5 | 3507 |
| 3 | 裸土 | 21 821 | 5 | 21 816 |
| 4 | 棉花 | 163 285 | 5 | 163 280 |
| 5 | 棉花柴 | 6218 | 5 | 6213 |
| 6 | 油菜 | 44 557 | 5 | 44 552 |
| 7 | 白菜 | 24 103 | 5 | 24 098 |
| 8 | 小白菜 | 4054 | 5 | 4049 |
| 9 | 卷心菜 | 10 819 | 5 | 10 814 |
| 10 | 榨菜 | 12 394 | 5 | 12 389 |
| 11 | 菜心 | 11 015 | 5 | 11 010 |
| 12 | 青菜 | 8954 | 5 | 8949 |
| 13 | 上海青 | 22 507 | 5 | 22 502 |
| 14 | 莴苣 | 7356 | 5 | 7351 |
| 15 | 莴笋 | 1002 | 5 | 997 |
| 16 | 生菜 | 7262 | 5 | 7257 |
| 17 | 罗马生菜 | 3010 | 5 | 3005 |
| 18 | 胡萝卜 | 3217 | 5 | 3212 |
| 19 | 白萝卜 | 8712 | 5 | 8707 |
| 20 | 蒜薹 | 3486 | 5 | 3481 |
| 21 | 蚕豆 | 1328 | 5 | 1323 |
| 22 | 柿子树 | 4040 | 5 | 4035 |
| 总数 | 386 693 | 110 | 386 583 |
表6
不同方法在LK数据集上的试验结果"
| 类别 | DGPF[ | A2S2K[ | LAMFN[ | SGUMLP[ | Swin-HSI[ | SSFTT[ | LWCT |
|---|---|---|---|---|---|---|---|
| 1 | 96.07 | 96.07 | 96.71 | 92.53 | 88.66 | 94.00 | 97.38 |
| 2 | 92.31 | 93.13 | 93.87 | 90.00 | 87.81 | 90.43 | 90.33 |
| 3 | 95.62 | 93.71 | 96.79 | 97.99 | 96.91 | 99.00 | 97.80 |
| 4 | 75.89 | 85.71 | 88.11 | 76.73 | 73.53 | 72.79 | 92.36 |
| 5 | 87.20 | 83.69 | 98.15 | 87.08 | 89.45 | 92.07 | 98.64 |
| 6 | 94.18 | 97.74 | 95.40 | 94.67 | 93.10 | 96.44 | 97.40 |
| 7 | 95.21 | 99.38 | 95.73 | 93.58 | 88.40 | 95.73 | 96.41 |
| 8 | 70.85 | 74.53 | 69.48 | 72.96 | 61.78 | 72.55 | 69.98 |
| 9 | 85.44 | 82.07 | 85.97 | 81.70 | 76.36 | 85.59 | 85.58 |
| Kappa系数 | 84.68±4.78 | 90.38±3.65 | 90.16±3.46 | 83.56±3.93 | 78.75±6.86 | 83.58±4.36 | 92.23±2.84 |
| OA | 87.95±3.90 | 92.53±2.92 | 92.35±2.75 | 87.02±3.27 | 83.01±5.90 | 87.08±3.66 | 94.00±2.23 |
| AA | 88.08±2.71 | 89.56±3.47 | 91.13±2.92 | 87.47±2.16 | 84.00±3.04 | 88.73±2.02 | 91.77±2.86 |
表7
不同方法在HC数据集上的试验结果"
| 类别 | DGPF[ | A2S2K[ | LAMFN[ | SGUMLP[ | Swin-HSI[ | SSFTT[ | LWCT |
|---|---|---|---|---|---|---|---|
| 1 | 70.82 | 57.35 | 77.80 | 50.87 | 80.11 | 65.65 | 79.02 |
| 2 | 57.48 | 41.02 | 68.86 | 48.44 | 57.38 | 58.80 | 69.31 |
| 3 | 80.32 | 35.75 | 88.75 | 62.57 | 78.97 | 66.94 | 90.25 |
| 4 | 94.82 | 59.70 | 99.01 | 96.85 | 96.17 | 94.29 | 98.01 |
| 5 | 89.25 | 60.08 | 97.46 | 80.55 | 96.45 | 81.51 | 97.89 |
| 6 | 47.86 | 34.02 | 72.79 | 43.14 | 71.11 | 45.56 | 72.69 |
| 7 | 91.23 | 75.29 | 93.68 | 76.91 | 87.96 | 88.12 | 92.52 |
| 8 | 37.72 | 34.75 | 60.80 | 42.95 | 59.03 | 51.71 | 59.53 |
| 9 | 44.19 | 35.95 | 72.65 | 45.28 | 64.68 | 62.35 | 70.85 |
| 10 | 74.12 | 40.91 | 91.92 | 88.60 | 83.64 | 81.12 | 94.77 |
| 11 | 68.77 | 46.86 | 84.12 | 68.97 | 82.65 | 72.41 | 85.59 |
| 12 | 67.60 | 34.12 | 89.29 | 51.91 | 80.36 | 68.97 | 88.28 |
| 13 | 49.52 | 27.22 | 63.00 | 35.93 | 45.63 | 45.78 | 62.12 |
| 14 | 55.31 | 42.38 | 75.49 | 46.22 | 56.65 | 56.67 | 76.89 |
| 15 | 67.63 | 61.44 | 86.35 | 70.46 | 72.61 | 75.76 | 83.19 |
| 16 | 89.05 | 81.26 | 96.52 | 89.63 | 93.17 | 90.22 | 96.56 |
| Kappa系数 | 66.41±4.74 | 49.55±9.39 | 80.16±3.23 | 60.34±3.80 | 74.17±2.92 | 67.63±3.90 | 80.60±3.03 |
| OA | 70.79±4.39 | 55.93±8.61 | 82.86±2.87 | 65.23±3.54 | 77.64±2.62 | 71.84±3.76 | 83.24±2.70 |
| AA | 67.85±3.00 | 48.01±8.42 | 82.41±1.81 | 62.46±2.48 | 75.41±1.63 | 69.12±2.16 | 82.34±1.48 |
表8
不同方法在HH数据集上的试验结果"
| 类别 | DGPF[ | A2S2K[ | LAMFN[ | SGUMLP[ | Swin-HSI[ | SSFTT[ | LWCT |
|---|---|---|---|---|---|---|---|
| 1 | 72.59 | 76.81 | 81.76 | 78.79 | 79.34 | 78.32 | 82.62 |
| 2 | 68.39 | 78.85 | 75.34 | 62.97 | 68.56 | 69.77 | 78.91 |
| 3 | 69.90 | 79.81 | 84.00 | 68.73 | 80.70 | 83.26 | 84.80 |
| 4 | 86.66 | 74.38 | 94.61 | 72.93 | 94.66 | 81.55 | 95.67 |
| 5 | 87.84 | 70.64 | 92.09 | 68.03 | 93.01 | 76.56 | 93.07 |
| 6 | 87.61 | 87.79 | 92.07 | 88.44 | 90.92 | 87.19 | 91.66 |
| 7 | 41.51 | 47.81 | 63.32 | 45.86 | 52.70 | 44.06 | 61.95 |
| 8 | 43.83 | 39.05 | 65.32 | 64.34 | 73.82 | 59.32 | 63.58 |
| 9 | 88.30 | 92.08 | 93.62 | 92.09 | 87.67 | 91.41 | 92.77 |
| 10 | 34.83 | 66.03 | 84.43 | 35.48 | 59.49 | 43.18 | 85.15 |
| 11 | 47.82 | 44.94 | 72.78 | 28.27 | 54.31 | 38.69 | 74.28 |
| 12 | 36.24 | 57.66 | 67.63 | 37.20 | 54.63 | 43.32 | 69.38 |
| 13 | 39.73 | 51.81 | 61.65 | 36.15 | 49.96 | 45.72 | 64.54 |
| 14 | 54.69 | 69.88 | 84.31 | 71.30 | 77.84 | 72.87 | 83.35 |
| 15 | 96.72 | 92.55 | 99.22 | 92.82 | 95.40 | 98.07 | 98.93 |
| 16 | 80.63 | 87.71 | 97.19 | 73.76 | 89.62 | 89.38 | 96.92 |
| 17 | 72.51 | 71.08 | 83.90 | 71.46 | 76.78 | 79.62 | 83.71 |
| 18 | 81.62 | 82.12 | 96.53 | 92.85 | 92.67 | 91.26 | 97.48 |
| 19 | 61.92 | 77.36 | 91.85 | 80.22 | 80.28 | 72.71 | 93.08 |
| 20 | 56.70 | 77.32 | 87.54 | 57.69 | 75.47 | 55.43 | 87.14 |
| 21 | 64.64 | 88.95 | 99.00 | 57.50 | 89.86 | 87.17 | 97.88 |
| 22 | 79.21 | 81.02 | 94.79 | 70.51 | 88.04 | 86.39 | 95.60 |
| Kappa系数 | 67.50±4.23 | 67.14±4.33 | 83.72±1.94 | 62.01±5.69 | 78.38±2.60 | 68.49±4.07 | 84.53±0.96 |
| OA | 73.45±3.99 | 72.43±4.16 | 86.95±1.63 | 67.98±5.69 | 82.64±2.22 | 74.00±3.71 | 87.63±0.82 |
| AA | 66.09±2.40 | 72.53±2.05 | 84.68±1.58 | 65.79±2.06 | 77.53±1.63 | 71.60±2.85 | 85.11±1.24 |
表12
不同样本量试验结果"
| 方法 | LK数据集 | HC数据集 | HH数据集 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 5 | 10 | 15 | 20 | 25 | 5 | 10 | 15 | 20 | 25 | 5 | 10 | 15 | 20 | 25 | |
| DGPF[ | 87.95 | 94.89 | 94.76 | 96.61 | 91.90 | 70.79 | 81.62 | 85.01 | 87.88 | 88.59 | 73.45 | 83.83 | 86.34 | 89.00 | 89.44 |
| A2S2K[ | 92.53 | 84.32 | 91.34 | 94.85 | 88.54 | 55.93 | 67.34 | 80.97 | 77.52 | 78.50 | 72.43 | 73.64 | 70.60 | 86.75 | 82.94 |
| LAMFN[ | 92.35 | 95.37 | 96.63 | 97.22 | 96.54 | 82.86 | 89.42 | 92.58 | 93.61 | 94.52 | 86.95 | 90.71 | 92.77 | 94.11 | 94.52 |
| SGUMLP[ | 87.02 | 92.29 | 94.16 | 94.97 | 95.92 | 65.23 | 72.90 | 77.65 | 80.74 | 81.61 | 67.98 | 76.36 | 79.71 | 81.82 | 82.41 |
| Swin-HSI[ | 83.01 | 88.82 | 91.61 | 92.33 | 93.62 | 77.64 | 83.79 | 86.37 | 88.16 | 88.37 | 82.64 | 86.48 | 87.44 | 89.15 | 90.19 |
| SSFTT[ | 87.08 | 94.15 | 95.03 | 96.41 | 96.77 | 71.84 | 81.50 | 85.96 | 85.96 | 86.34 | 74.00 | 81.55 | 81.62 | 87.87 | 88.98 |
| LWCT | 94.00 | 96.07 | 96.82 | 97.35 | 97.60 | 83.24 | 89.71 | 92.37 | 93.63 | 94.33 | 87.63 | 91.01 | 93.07 | 93.99 | 94.64 |
| [1] | 乔智, 姜群鸥, 律可心, 等. 无人机高光谱遥感和集成深度置信神经网络算法用于密云水库水质参数反演[J]. 光谱学与光谱分析, 2024, 44(7): 2066-2074. |
| QIAO Zhi, JIANG Qunou, LÜ Kexin, et al. Retrieval model for water quality parameters of Miyun Reservoir based on UAV hyperspectral remote sensing data and deep neural network algorithm[J]. Spectroscopy and Spectral Analysis, 2024, 44(7): 2066-2074. | |
| [2] | 周冰, 李秉璇, 贺宣, 等. 陆基条件下典型地物和伪装光谱影响因子分析[J]. 光谱学与光谱分析, 2021, 41(9): 2956-2961. |
| ZHOU Bing, LI Bingxuan, HE Xuan, et al. Study on the spectral characteristics of ground objects in land-based hyperspectral imaging[J]. Spectroscopy and Spectral Analysis, 2021, 41(9): 2956-2961. | |
| [3] | HONG D, LI C, YOKOYA N, et al. Hyperspectral imaging[EB/OL]. [2025-11-13]. https://arxiv.org/abs/2508.08107. |
| [4] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. [2025-11-13]. https://arxiv.org/abs/2010.11929. |
| [5] |
刘冰, 余旭初, 张鹏强, 等. 联合空-谱信息的高光谱影像深度三维卷积网络分类[J]. 测绘学报, 2019, 48(1): 53-63. DOI: .
doi: 10.11947/j.AGCS.2019.20170578 |
|
LIU Bing, YU Xuchu, ZHANG Pengqiang, et al. Deep 3D convolutional network combined with spatial-spectral features for hyperspectral image classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1): 53-63. DOI: .
doi: 10.11947/j.AGCS.2019.20170578 |
|
| [6] | ZHONG Zilong, LI J, LUO Zhiming, et al. Spectral-spatial residual network for hyperspectral image classification: a 3D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 847-858. |
| [7] | ROY S K, MANNA S, SONG Tiecheng, et al. Attention-based adaptive spectral-spatial kernel ResNet for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7831-7843. |
| [8] | FENG Fan, ZHANG Yongsheng, ZHANG Jin, et al. Low-rank constrained attention-enhanced multiple spatial-spectral feature fusion for small sample hyperspectral image classification[J]. Remote Sensing, 2023, 15(2): 304. |
| [9] | HONG Danfeng, HAN Zhu, YAO Jing, et al. SpectralFormer: rethinking hyperspectral image classification with Transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5518615. |
| [10] | SUN Le, ZHAO Guangrui, ZHENG Yuhui, et al. Spectral-spatial feature tokenization Transformer for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5522214. |
| [11] | LI Bing, WANG Qiwen, LIANG Jiahong, et al. SquconvNet: deep sequencer convolutional network for hyperspectral image classification[J]. Remote Sensing, 2023, 15(4): 983. |
| [12] | ZHANG Mengmeng, LI Wei, ZHAO Xudong, et al. Morphological transformation and spatial-logical aggregation for tree species classification using hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5501212. |
| [13] | SHI Hao, CAO Guo, ZHANG Youqiang, et al. F3Net: fast Fourier filter network for hyperspectral image classification[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 5502218. |
| [14] | JAMALI A, ROY S K, GHAMISI P. WetMapFormer: a unified deep CNN and vision Transformer for complex wetland mapping[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 120: 103333. |
| [15] | 冯凡, 张永生, 张津, 等. 基于混合卷积网络的高光谱图像自监督特征学习方法[J]. 光学学报, 2024, 44(18): 1828007. |
| FENG Fan, ZHANG Yongsheng, ZHANG Jin, et al. Self-supervised feature learning method for hyperspectral images based on mixed convolutional networks[J]. Acta Optica Sinica, 2024, 44(18): 1828007. | |
| [16] | LIU Bing, YU Xuchu, YU Anzhu, et al. Deep few-shot learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4): 2290-2304. |
| [17] | GAO Kuiliang, LIU Bing, YU Xuchu, et al. Unsupervised meta learning with multiview constraints for hyperspectral image small sample set classification[J]. IEEE Transactions on Image Processing, 2022, 31: 3449-3462. |
| [18] | HUANG Lingbo, CHEN Yushi, HE Xin. Spectral-spatial masked Transformer with supervised and contrastive learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5508718. |
| [19] | JAMALI A, ROY S K, HONG D, et al. Spatial gated multi-Layer perceptron for land use and land cover mapping[EB/OL]. [2025-11-13]. https://arxiv.org/abs/2308.05235. |
| [20] | TOLSTIKHIN I O, HOULSBY N, KOLESNIKOV A, et al. MLP-mixer: an all-MLP architecture for vision[EB/OL]. [2025-11-13]. https://arxiv.ogr/abs/2105.01601. |
| [21] | HOWARD A, SANDLER M, CHEN Bo, et al. Searching for MobileNetV3[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 1314-1324. |
| [22] | HU X, ZHONG Y, LUO C, et al. WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets for hyperspectral image classification[EB/OL]. [2025-11-13]. https://arxiv.org/abs/2012.13920. |
| [23] | ZHAN Jialei, XIE Yuhang, GUO Jiajia, et al. DGPF-RENet: a low data dependence network with low training iterations for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5520521. |
| [24] | LIU Baisen, LIU Yuanjia, ZHANG Wulin, et al. Spectral swin Transformer network for hyperspectral image classification[J]. Remote Sensing, 2023, 15(15): 3721. |
| [25] | HENDRYCKS D, GIMPEL K. Gaussian error linear units (Gelus)[EB/OL]. [2025-11-13]. https://arxiv.org/abs/1606.08415. |
| [26] | RAMACHANDRAN P, ZOPH B, LE Q V. Searching for activation functions[EB/OL]. [2025-11-13]. https://arxiv.org/abs/1710.05941. |
| [27] | LI Zhaokui, LIU Ming, CHEN Yushi, et al. Deep cross-domain few-shot learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5501618. |
| [28] | XI Bobo, ZHANG Yun, LI Jiaojiao, et al. CTF-SSCL: CNN-Transformer for few-shot hyperspectral image classification assisted by semisupervised contrastive learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5532617. |
| [29] | WANG Zhuowei, ZHAO Shihui, ZHAO Genping, et al. Dual-branch domain adaptation few-shot learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5506116. |
| [30] | LIU Bing, YU Anzhu, YU Xuchu, et al. Deep multiview learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7758-7772. |
| [1] | 张艺超, 郑向涛, 卢孝强. 基于层级Transformer的高光谱图像分类方法[J]. 测绘学报, 2023, 52(7): 1139-1147. |
| [2] | 左溪冰, 刘冰, 余旭初, 张鹏强, 高奎亮, 朱恩泽. 高光谱影像小样本分类的图卷积网络方法[J]. 测绘学报, 2021, 50(10): 1358-1369. |
| [3] | 谷雨, 徐英, 郭宝峰. 融合空谱特征和集成超限学习机的高光谱图像分类[J]. 测绘学报, 2018, 47(9): 1238-1249. |
| [4] | 侯榜焕, 王锟, 姚敏立, 贾维敏, 王榕. 面向高光谱图像分类的半监督空谱判别分析[J]. 测绘学报, 2017, 46(9): 1098-1106. |
| [5] | 邵远杰 吴国平 马丽. 属类概率距离构图的半监督高光谱图像分类[J]. 测绘学报, 2014, 43(11): 1182-1189. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||