
测绘学报 ›› 2025, Vol. 54 ›› Issue (12): 2247-2261.doi: 10.11947/j.AGCS.2025.20250156
侯昭阳1,2,3(
), 闫浩文1,2,3(
), 张黎明1,2,3, 马荣娟1,2,3, 屈睿涛1,2,3
收稿日期:2025-04-28
修回日期:2025-11-16
出版日期:2026-01-15
发布日期:2026-01-15
通讯作者:
闫浩文
E-mail:13230085@stu.lzjtu.edu.cn;yanhw@lzjtu.edu.cn
作者简介:侯昭阳(1996—),男,博士生,研究方向为空间数据安全。 E-mail:13230085@stu.lzjtu.edu.cn
基金资助:
Zhaoyang HOU1,2,3(
), Haowen YAN1,2,3(
), Liming ZHANG1,2,3, Rongjuan MA1,2,3, Ruitao QU1,2,3
Received:2025-04-28
Revised:2025-11-16
Online:2026-01-15
Published:2026-01-15
Contact:
Haowen YAN
E-mail:13230085@stu.lzjtu.edu.cn;yanhw@lzjtu.edu.cn
About author:HOU Zhaoyang (1996—), male, PhD candidate, majors in spatial data security. E-mail: 13230085@stu.lzjtu.edu.cn
Supported by:摘要:
当前主流零水印方法对遥感影像特有的光谱-空间多维特征挖掘存在不足,面对针对性攻击时稳健性较差,且依赖第三方知识产权管理机构,存在数据被篡改风险和交易互信度低的问题。为此,本文提出一种基于耦合神经P系统与区块链的遥感影像零水印版权保护方法。首先,采用非下采样剪切波变换对遥感影像的R、G、B波段分别进行多尺度分解得到相应的低频分量。其次,构建多层感知的耦合神经P系统模型,模拟神经元的耦合交互关系,挖掘各低频分量的时空动态特征;同时,引入多尺度形态梯度对模型的外部输入进行优化,以增强特征的空间相关性。然后,利用非对称Tent映射生成加密特征图像,并通过置乱与异或操作构建零水印。最后,结合Hyperledger Fabric和星际文件系统构建去中心化版权注册框架,通过智能合约实现版权信息的链上存证与自动验证。试验结果表明,在面对不同强度的几何攻击、非几何攻击及其组合攻击时,本文方法的归一化相关系数均稳定保持在0.99以上,展现出了较高的稳健性与抗攻击能力。
中图分类号:
侯昭阳, 闫浩文, 张黎明, 马荣娟, 屈睿涛. 基于耦合神经P系统与区块链的遥感影像零水印版权保护方法[J]. 测绘学报, 2025, 54(12): 2247-2261.
Zhaoyang HOU, Haowen YAN, Liming ZHANG, Rongjuan MA, Ruitao QU. Zero-watermark copyright protection method for remote sensing images based on coupled neural P system and blockchain[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2247-2261.
表1
影像间的零水印NC值"
| 影像 | 飞机场1 | 飞机场2 | 储油罐1 | 储油罐2 | 立交桥1 | 立交桥2 | 操场1 | 操场2 |
|---|---|---|---|---|---|---|---|---|
| 飞机场1 | 1.000 0 | 0.658 3 | 0.528 9 | 0.482 1 | 0.379 4 | 0.472 9 | 0.527 3 | 0.594 6 |
| 飞机场2 | 0.658 3 | 1.000 0 | 0.563 2 | 0.529 4 | 0.527 8 | 0.514 7 | 0.612 9 | 0.631 8 |
| 储油罐1 | 0.528 9 | 0.563 2 | 1.000 0 | 0.624 8 | 0.492 4 | 0.472 8 | 0.492 7 | 0.548 7 |
| 储油罐2 | 0.482 1 | 0.529 4 | 0.624 8 | 1.000 0 | 0.484 5 | 0.527 3 | 0.523 8 | 0.524 3 |
| 立交桥1 | 0.379 4 | 0.527 8 | 0.492 4 | 0.484 5 | 1.000 0 | 0.652 8 | 0.638 1 | 0.591 3 |
| 立交桥2 | 0.472 9 | 0.514 7 | 0.472 8 | 0.527 3 | 0.652 8 | 1.000 0 | 0.617 7 | 0.583 6 |
| 操场1 | 0.527 3 | 0.612 9 | 0.492 7 | 0.523 8 | 0.638 1 | 0.617 7 | 1.000 0 | 0.683 5 |
| 操场2 | 0.594 6 | 0.631 8 | 0.548 7 | 0.524 3 | 0.591 3 | 0.583 6 | 0.683 5 | 1.000 0 |
表2
几何攻击的试验结果"
| 攻击方式 | 参数 | PSNR | DFT-DCT[ | DCT-DFT[ | BEMD-DFT[ | NSST-SVD[ | 本文方法 | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| BER | NC | BER | NC | BER | NC | BER | NC | BER | NC | |||
| 裁剪 | 左上角1/4 | 13.339 | 0.184 | 0.629 | 0.184 | 0.628 | 0.077 | 0.843 | 0.085 | 0.827 | 0.003 | 0.994 |
| 中心1/4 | 12.950 | 0.201 | 0.593 | 0.197 | 0.605 | 0.085 | 0.827 | 0.102 | 0.794 | 0.003 | 0.994 | |
| 翻转 | 上下 | 13.750 | 0.491 | 0.102 | 0.497 | 0.067 | 0.014 | 0.972 | 0.018 | 0.963 | 0.000 | 1.000 |
| 左右 | 13.612 | 0.503 | 0.062 | 0.489 | 0.128 | 0.020 | 0.959 | 0.021 | 0.957 | 0.000 | 1.000 | |
| 旋转 | 5° | 12.962 | 0.255 | 0.482 | 0.065 | 0.867 | 0.038 | 0.922 | 0.083 | 0.832 | 0.001 | 0.997 |
| 10° | 11.403 | 0.262 | 0.469 | 0.097 | 0.822 | 0.056 | 0.886 | 0.092 | 0.814 | 0.001 | 0.996 | |
| 20° | 10.144 | 0.274 | 0.447 | 0.109 | 0.776 | 0.103 | 0.791 | 0.115 | 0.767 | 0.002 | 0.995 | |
| 缩放 | 0.25 | 26.206 | 0.028 | 0.944 | 0.027 | 0.945 | 0.002 | 0.995 | 0.003 | 0.995 | 0.000 | 1.000 |
| 0.5 | 28.128 | 0.025 | 0.948 | 0.025 | 0.950 | 0.002 | 0.996 | 0.002 | 0.995 | 0.000 | 1.000 | |
| 2 | 38.847 | 0.002 | 0.997 | 0.001 | 0.997 | 0.000 | 0.999 | 0.000 | 1.000 | 0.000 | 1.000 | |
| 4 | 39,187 | 0.002 | 0.997 | 0.001 | 0.998 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | |
表3
非几何攻击的试验结果"
| 攻击方式 | 参数 | PSNR | DFT-DCT[ | DCT-DFT[ | BEMD-DFT[ | NSST-SVD[ | 本文方法 | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| BER | NC | BER | NC | BER | NC | BER | NC | BER | NC | |||
| 均值滤波 | [3,3] | 28.908 | 0.006 | 0.988 | 0.006 | 0.989 | 0.002 | 0.995 | 0.006 | 0.987 | 0.000 | 1.000 |
| [5,5] | 26.672 | 0.010 | 0.979 | 0.009 | 0.981 | 0.004 | 0.992 | 0.009 | 0.981 | 0.000 | 1.000 | |
| [7,7] | 25.411 | 0.015 | 0.970 | 0.013 | 0.974 | 0.006 | 0.987 | 0.013 | 0.975 | 0.000 | 1.000 | |
| [9,9] | 24.552 | 0.020 | 0.960 | 0.017 | 0.966 | 0.009 | 0.982 | 0.016 | 0.968 | 0.000 | 0.999 | |
| 中值滤波 | [3,3] | 29.102 | 0.018 | 0.964 | 0.017 | 0.966 | 0.003 | 0.993 | 0.004 | 0.991 | 0.000 | 1.000 |
| [5,5] | 27.176 | 0.031 | 0.937 | 0.030 | 0.939 | 0.007 | 0.986 | 0.009 | 0.982 | 0.000 | 1.000 | |
| [7,7] | 25.997 | 0.044 | 0.912 | 0.042 | 0.915 | 0.010 | 0.979 | 0.013 | 0.974 | 0.000 | 0.999 | |
| [9,9] | 25.168 | 0.055 | 0.889 | 0.053 | 0.893 | 0.014 | 0.972 | 0.016 | 0.967 | 0.001 | 0.998 | |
| 高斯滤波 | [3,3] | 29.858 | 0.005 | 0.989 | 0.005 | 0.990 | 0.003 | 0.994 | 0.006 | 0.989 | 0.000 | 1.000 |
| [5,5] | 28.586 | 0.007 | 0.985 | 0.007 | 0.987 | 0.004 | 0.991 | 0.007 | 0.985 | 0.000 | 1.000 | |
| [7,7] | 28.367 | 0.008 | 0.984 | 0.007 | 0.986 | 0.006 | 0.987 | 0.008 | 0.984 | 0.000 | 0.999 | |
| [9,9] | 28,247 | 0.008 | 0.984 | 0.007 | 0.986 | 0.007 | 0.986 | 0.008 | 0.984 | 0.001 | 0.998 | |
| 维纳滤波 | [3,3] | 43.026 | 0.002 | 0.997 | 0.001 | 0.997 | 0.000 | 1.000 | 0.000 | 0.999 | 0.000 | 1.000 |
| [5,5] | 38.980 | 0.002 | 0.995 | 0.002 | 0.996 | 0.000 | 0.999 | 0.001 | 0.999 | 0.000 | 1.000 | |
| [7,7] | 36.787 | 0.003 | 0.994 | 0.003 | 0.994 | 0.000 | 0.999 | 0.001 | 0.998 | 0.000 | 1.000 | |
| [9,9] | 35.386 | 0.004 | 0.992 | 0.004 | 0.992 | 0.001 | 0.998 | 0.001 | 0.998 | 0.000 | 1.000 | |
| 压缩 | 10 | 27.848 | 0.037 | 0.925 | 0.037 | 0.926 | 0.013 | 0.972 | 0.005 | 0.989 | 0.006 | 0.988 |
| 30 | 32.496 | 0.013 | 0.974 | 0.013 | 0.975 | 0.005 | 0.991 | 0.001 | 0.997 | 0.001 | 0.999 | |
| 50 | 34.567 | 0.008 | 0.983 | 0.008 | 0.985 | 0.003 | 0.996 | 0.001 | 0.998 | 0.000 | 1.000 | |
| 锐化 | 5 | 23.978 | 0.031 | 0.937 | 0.030 | 0.940 | 0.006 | 0.987 | 0.010 | 0.980 | 0.000 | 0.999 |
| 7 | 21.390 | 0.043 | 0.914 | 0.042 | 0.916 | 0.011 | 0.978 | 0.015 | 0.970 | 0.001 | 0.998 | |
| 9 | 19.618 | 0.054 | 0.892 | 0.052 | 0.894 | 0.015 | 0.970 | 0.020 | 0.960 | 0.002 | 0.996 | |
| 椒盐噪声 | 0.03 | 20.567 | 0.040 | 0.918 | 0.039 | 0.921 | 0.006 | 0.988 | 0.009 | 0.982 | 0.001 | 0.998 |
| 0.05 | 18.345 | 0.046 | 0.907 | 0.044 | 0.910 | 0.008 | 0.983 | 0.012 | 0.976 | 0.001 | 0.997 | |
| 0.1 | 15.333 | 0.063 | 0.872 | 0.062 | 0.873 | 0.012 | 0.976 | 0.018 | 0.963 | 0.001 | 0.997 | |
| 高斯噪声 | 0.03 | 19.757 | 0.032 | 0.936 | 0.032 | 0.934 | 0.009 | 0.982 | 0.011 | 0.977 | 0.000 | 0.999 |
| 0.05 | 19.169 | 0.039 | 0.921 | 0.043 | 0.923 | 0.013 | 0.974 | 0.015 | 0.969 | 0.001 | 0.998 | |
| 0.1 | 17.156 | 0.048 | 0.903 | 0.046 | 0.906 | 0.018 | 0.964 | 0.021 | 0.958 | 0.001 | 0.998 | |
| 泊松噪声 | — | 28.047 | 0.012 | 0.975 | 0.012 | 0.976 | 0.002 | 0.996 | 0.002 | 0.996 | 0.000 | 1.000 |
表4
组合攻击的试验结果"
| 攻击方式 | 参数 | PSNR | DFT-DCT[ | DCT-DFT[ | BEMD-DFT[ | NSST-SVD[ | 本文方法 | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| BER | NC | BER | NC | BER | NC | BER | NC | BER | NC | |||
| 中值滤波、维纳滤波 | [5,5]、[5,5] | 27.037 | 0.031 | 0.937 | 0.030 | 0.939 | 0.008 | 0.983 | 0.009 | 0.981 | 0.001 | 0.999 |
| 均值滤波、高斯滤波 | [5,5]、[5,5] | 26.150 | 0.015 | 0.970 | 0.013 | 0.973 | 0.007 | 0.985 | 0.013 | 0.975 | 0.004 | 0.992 |
| 均值滤波、锐化 | [5,5]、7 | 25.303 | 0.012 | 0.976 | 0.012 | 0.976 | 0.006 | 0.988 | 0.012 | 0.977 | 0.000 | 1.000 |
| 高斯滤波、压缩 | [5,5]、30 | 27.646 | 0.015 | 0.969 | 0.015 | 0.969 | 0.006 | 0.987 | 0.006 | 0.987 | 0.003 | 0.995 |
| 中值滤波、椒盐噪声 | [7,7]、0.03 | 19.403 | 0.042 | 0.915 | 0.040 | 0.919 | 0.011 | 0.978 | 0.012 | 0.976 | 0.001 | 0.997 |
| 压缩、高斯噪声 | 10、0.05 | 18.580 | 0.042 | 0.914 | 0.041 | 0.918 | 0.015 | 0.970 | 0.015 | 0.969 | 0.006 | 0.987 |
| 锐化、泊松噪声 | 5、— | 22.417 | 0.034 | 0.931 | 0.033 | 0.933 | 0.007 | 0.986 | 0.010 | 0.979 | 0.001 | 0.999 |
| 剪裁、翻转图像 | 左上1/4、上下 | 10.834 | 0.511 | 0.073 | 0.492 | 0.097 | 0.080 | 0.838 | 0.089 | 0.821 | 0.003 | 0.994 |
| 翻转图像、缩放 | 上下、4 | 13.682 | 0.487 | 0.120 | 0.491 | 0.029 | 0.014 | 0.972 | 0.018 | 0.963 | 0.000 | 1.000 |
| 翻转图像、压缩 | 左右、10 | 13.627 | 0.506 | 0.141 | 0.511 | 0.102 | 0.017 | 0.966 | 0.020 | 0.960 | 0.007 | 0.986 |
| 旋转、缩放 | 5°、0.25 | 13.185 | 0.257 | 0.478 | 0.068 | 0.862 | 0.042 | 0.915 | 0.083 | 0.831 | 0.004 | 0.992 |
| 椒盐噪声、高斯噪声、泊松噪声 | 0.05、0.05、— | 15.929 | 0.051 | 0.897 | 0.049 | 0.900 | 0.015 | 0.970 | 0.018 | 0.963 | 0.002 | 0.997 |
| 均值滤波、高斯噪声、裁剪 | [7,7]、0.03、左上1/4 | 13.122 | 0.190 | 0.623 | 0.188 | 0.620 | 0.081 | 0.837 | 0.087 | 0.821 | 0.003 | 0.994 |
| 维纳滤波、泊松噪声、翻转图像 | [5,5]、—、上下 | 13.510 | 0.502 | 0.018 | 0.497 | 0.043 | 0.014 | 0.972 | 0.018 | 0.963 | 0.000 | 1.000 |
| 高斯滤波、压缩、旋转 | [5,5]、30、5° | 13.160 | 0.258 | 0.476 | 0.069 | 0.859 | 0.043 | 0.914 | 0.086 | 0.825 | 0.004 | 0.991 |
| [1] | ZHANG Xinchang, SHI Qian, SUN Ying, et al. The review of land use/land cover mapping AI methodology and application in the era of remote sensing big data[J]. Journal of Geodesy and Geoinformation Science, 2024, 7(3): 1-23. |
| [2] | WANG Mengyu, YAN Zhiyuan, FENG Yingchao, et al. Multi-task learning of semantic segmentation and height estimation for multi-modal remote sensing images[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(4): 27-39. |
| [3] | LI Jiaxin, HONG Danfeng, GAO Lianru, et al. Deep learning in multimodal remote sensing data fusion: a comprehensive review[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102926. |
| [4] | HOU Zhaoyang, YAN Haowen, ZHANG Liming, et al. A secure and efficient remote sensing image retrieval method with verifiable and traceable in cloud environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 4701216. |
| [5] |
朱长青, 任娜, 徐鼎捷. 地理信息安全技术研究进展与展望[J]. 测绘学报, 2022, 51(6): 1017-1028. DOI: .
doi: 10.11947/j.AGCS.2022.20220172 |
|
ZHU Changqing, REN Na, XU Dingjie. Geo-information security technology: progress and prospects[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 1017-1028. DOI: .
doi: 10.11947/j.AGCS.2022.20220172 |
|
| [6] |
奚旭, 张新长. 基于区间映射和最大扰动区域的矢量地图可逆水印算法[J]. 测绘学报, 2022, 51(11): 2379-2389. DOI: .
doi: 10.11947/j.AGCS.2022.20210552 |
|
XI Xu, ZHANG Xinchang. Reversible watermarking for vector maps based on interval mapping and maximum perturbation region[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(11): 2379-2389. DOI: .
doi: 10.11947/j.AGCS.2022.20210552 |
|
| [7] | REN Na, GUO Shuitao, ZHU Changqing, et al. A zero-watermarking scheme based on spatial topological relations for vector dataset[J]. Expert Systems with Applications, 2023, 226: 120217. |
| [8] |
朱长青, 徐鼎捷, 任娜, 等. 区块链与数字水印相结合的地理数据交易存证及版权保护模型[J]. 测绘学报, 2021, 50(12): 1694-1704. DOI: .
doi: 10.11947/j.AGCS.2021.20200559 |
|
ZHU Changqing, XU Dingjie, REN Na, et al. Model and implementation of geographic data transaction certificate and copyright protection based on blockchain and digital watermarking[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(12): 1694-1704. DOI: .
doi: 10.11947/j.AGCS.2021.20200559 |
|
| [9] | 赵蕾, 桂小林, 邵屹杨, 等. 数字图像多功能水印综述[J]. 计算机辅助设计与图形学学报, 2024, 36(2): 195-222. |
| ZHAO Lei, GUI Xiaolin, SHAO Yiyang, et al. Survey on multipurpose digital image watermarking[J]. Journal of Computer-Aided Design & Computer Graphics, 2024, 36(2): 195-222. | |
| [10] | TAN Tao, ZHANG Liming, ZHANG Mingwang, et al. Commutative encryption and watermarking algorithm based on compound chaotic systems and zero-watermarking for vector map[J]. Computers & Geosciences, 2024, 184: 105530. |
| [11] | XU Dingjie, REN Na, ZHU Changqing. High-resolution remote sensing image zero-watermarking algorithm based on blockchain and SDAE[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 323-339. |
| [12] | JING Liang, SUN Zhentao, CHEN Kexin, et al. Remote sensing image zero watermarking algorithm based on DFT[J]. Journal of Physics: Conference Series, 2021, 1865(4): 042034. |
| [13] | XING Siming, LI Tongyi, LIANG Jing. A zero-watermark hybrid algorithm for remote sensing images based on DCT and DFT[J]. Journal of Physics: Conference Series, 2021, 1952(2): 022049. |
| [14] | XING Siming, CHENG Zhilin, JI Chunyu, et al. Remote sensing image zero-watermark algorithm based on BEMD[J]. Journal of Physics: Conference Series, 2021, 1865(4): 042035. |
| [15] | 徐依朋, 胡坤, 王小超, 等. 基于BEMD和DFT的遥感图像零水印算法[J]. 计算机辅助设计与图形学学报, 2022, 34(11): 1731-1741. |
| XU Yipeng, HU Kun, WANG Xiaochao, et al. Zero-watermarking algorithm for remote sensing image via BEMD and DFT[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(11): 1731-1741. | |
| [16] | XU Dingjie, ZHU Changqing, REN Na. A zero-watermark algorithm for copyright protection of remote sensing image based on blockchain[C]//Proceedings of 2022 International Conference on Blockchain Technology and Information Security. Huaihua: IEEE, 2022: 111-116. |
| [17] | OUYANG Xue, XU Yanyan, MAO Yangsu, et al. Blockchain-assisted verifiable and secure remote sensing image retrieval in cloud environment[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 1378-1389. |
| [18] | SONG Hongyu, ZHU Nafei, XUE Ruixin, et al. Proof-of-contribution consensus mechanism for blockchain and its application in intellectual property protection[J]. Information Processing & Management, 2021, 58(3): 102507. |
| [19] | PENG Shaoliang, BAO Wenxuan, LIU Hao, et al. A peer-to-peer file storage and sharing system based on consortium blockchain[J]. Future Generation Computer Systems, 2023, 141: 197-204. |
| [20] | 侯昭阳, 吕开云, 龚循强, 等. 一种结合低级视觉特征和PAPCNN的NSST域遥感影像融合方法[J]. 武汉大学学报(信息科学版), 2023, 48(6): 960-969. |
| HOU Zhaoyang, LÜ Kaiyun, GONG Xunqiang, et al. Remote sensing image fusion based on low-level visual features and PAPCNN in NSST domain[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 960-969. | |
| [21] | ROY K, JAISWAL A, PANDA P. Towards spike-based machine intelligence with neuromorphic computing[J]. Nature, 2019, 575(7784): 607-617. |
| [22] |
龚循强, 侯昭阳, 吕开云, 等. 结合改进Laplacian能量和参数自适应双通道ULPCNN的遥感影像融合方法[J]. 测绘学报, 2023, 52(11): 1892-1905. DOI: .
doi: 10.11947/j.AGCS.2023.20220541 |
|
GONG Xunqiang, HOU Zhaoyang, LÜ Kaiyun. Remote sensing image fusion method combining improved Laplacian energy and parameter adaptive dual-channel unit-linking pulse coupled neural network[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(11): 1892-1905. DOI: .
doi: 10.11947/j.AGCS.2023.20220541 |
|
| [23] | PENG Hong, WANG Jun. Coupled neural P systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 30(6): 1672-1682. |
| [24] | GONG Xunqiang, HOU Zhaoyang, WAN Yuting, et al. Multispectral and SAR image fusion for multiscale decomposition based on least squares optimization rolling guidance filtering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-20. |
| [25] | HOU Zhaoyang, LÜ Kaiyun, GONG Xunqiang, et al. A remote sensing image fusion method combining low-level visual features and parameter-adaptive dual-channel pulse-coupled neural network[J]. Remote Sensing, 2023, 15(2): 344. |
| [26] | YU Chengting, GU Zheming, LI Da, et al. STSC-SNN: spatio-temporal synaptic connection with temporal convolution and attention for spiking neural networks[J]. Frontiers in Neuroscience, 2022, 16: 1079357. |
| [27] | EL HAJJI M, ES-SAADY Y, AIT ADDI M, et al. Optimization of agrifood supply chains using Hyperledger Fabric blockchain technology[J]. Computers and Electronics in Agriculture, 2024, 227: 109503. |
| [28] | ZHU Changpeng, FAN Bincheng, XIANG Nan, et al. A fine-grained compression scheme for block transmission acceleration over IPFS network[J]. Computer Networks, 2025, 261: 111131. |
| [1] | 季顺平, 刘瑾, 高建, 龚健雅. 多视影像深度学习密集匹配三维重建智能框架[J]. 测绘学报, 2025, 54(9): 1633-1646. |
| [2] | 谢亚坤, 赵耀纪, 涂佳星, 夏瑞丰, 冯德俊, 刘苏凝, 陈虹宇, 朱军. 融合边缘与全局特征的遥感影像显著性目标检测方法[J]. 测绘学报, 2025, 54(7): 1265-1279. |
| [3] | 董子博, 王竞雪, 卜丽静, 房琳, 许峥辉. MAFNet:基于多尺度空洞融合网络的遥感影像建筑物提取方法[J]. 测绘学报, 2025, 54(6): 1094-1106. |
| [4] | 李海峰, 郭旺, 吴梦伟, 彭程里, 朱庆, 刘瑜, 陶超. 视觉-语言联合的遥感地物概念表达与智能解译:原理、挑战与机遇[J]. 测绘学报, 2025, 54(5): 853-872. |
| [5] | 赵一鸣, 胡克林, 涂可龙, 卿雅娴, 杨超, 祁昆仑, 吴华意. 基于SAR与光学遥感影像融合的多标签场景分类方法[J]. 测绘学报, 2025, 54(5): 911-923. |
| [6] | 王超, 陈天宇, 张同, AhmedTanvir, 纪立强, 谢涛, 杨佳俊, 王帅. 基于全局差分增强模块和平衡惩罚损失的多源光学遥感影像变化检测[J]. 测绘学报, 2025, 54(5): 873-887. |
| [7] | 张新长, 齐霁, 陶超, 傅思扬, 郭明宁, 阮永检. 光学遥感影像去云研究进展、挑战与趋势[J]. 测绘学报, 2025, 54(4): 603-620. |
| [8] | 龚希, 陈占龙, 郑恒强, 胡胜, 张洪艳. 融合迁移特征空间和语义信息的遥感影像场景分类方法[J]. 测绘学报, 2025, 54(11): 2009-2025. |
| [9] | 张志力, 姜慧伟, 胡翔云. 面向极简交互的遥感地物精确批量提取框架[J]. 测绘学报, 2025, 54(10): 1863-1876. |
| [10] | 龚良雄, 李星华, 程远明, 赵兴友, 谢仁平, 王红根. 时空差异增强与自适应特征融合的轻量级遥感影像变化检测网络[J]. 测绘学报, 2025, 54(1): 136-153. |
| [11] | 李佳铃, 齐霁, 鲁伟鹏, 陶超. 面向城市功能区分类的光学遥感影像-OSM数据联合自监督学习方法[J]. 测绘学报, 2025, 54(1): 154-164. |
| [12] | 鄢薪, 慎利, 潘俊杰, 戴延帅, 王继成, 郑晓莉, 李志林. 多尺度特征融合与空间优化的弱监督高分遥感建筑变化检测[J]. 测绘学报, 2024, 53(8): 1586-1597. |
| [13] | 谢志伟, 翟帅智, 张丰源, 陈旻, 孙立双. 面向对象高分影像归纳式图神经网络分类法[J]. 测绘学报, 2024, 53(8): 1610-1623. |
| [14] | 殷吉崇, 武芳, 翟仁健, 邱越, 巩现勇, 行瑞星. 面向建筑物轮廓规则化的双路径边界约束与相对论生成对抗网络[J]. 测绘学报, 2024, 53(7): 1444-1457. |
| [15] | 杨军, 解恒静, 范红超, 闫浩文. 遥感影像目标检测多尺度熵神经网络架构搜索[J]. 测绘学报, 2024, 53(7): 1384-1400. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||