
测绘学报 ›› 2025, Vol. 54 ›› Issue (7): 1265-1279.doi: 10.11947/j.AGCS.2025.20240247
谢亚坤1,2(
), 赵耀纪1, 涂佳星1, 夏瑞丰1, 冯德俊1, 刘苏凝1, 陈虹宇1, 朱军1(
)
收稿日期:2024-06-19
修回日期:2025-06-06
出版日期:2025-08-18
发布日期:2025-08-18
通讯作者:
朱军
E-mail:yakunxie@163.com;zhujun@swjtu.edu.cn
作者简介:谢亚坤(1991—),男,博士,副教授,研究方向为信息智能感知与数字孪生建模。E-mail:yakunxie@163.com
基金资助:
Yakun XIE1,2(
), Yaoji ZHAO1, Jiaxing TU1, Ruifeng XIA1, Dejun FENG1, Suning LIU1, Hongyu CHEN1, Jun ZHU1(
)
Received:2024-06-19
Revised:2025-06-06
Online:2025-08-18
Published:2025-08-18
Contact:
Jun ZHU
E-mail:yakunxie@163.com;zhujun@swjtu.edu.cn
About author:XIE Yakun (1991—), male, PhD, associate professor, majors in intelligent information perception and digital twin modeling. E-mail: yakunxie@163.com
Supported by:摘要:
遥感影像显著性检测(SOD)能有效区分影像中的关键特征和区域,从而提升图像分析的精确度和处理效率。然而,由于遥感影像的复杂性,现有遥感影像SOD方法存在显著性目标定位不准、边界模糊、目标置信度弱等问题。为解决这些问题,本文提出了一种融合边缘与全局信息的遥感影像显著性目标检测方法。首先,设计了边缘特征增强模块,利用Sobel算子提取浅层特征图中的边缘信息,生成边界线索特征图,并融合边界注意力和空间、通道注意力,进一步增强局部特征表示,从而有效改善显著目标的边界模糊问题。然后,提出了全局上下文特征增强模块,通过全局平均池化和全连接层获取图像级语义信息,并结合空间注意力机制生成全局关联图,并以此为基础,利用多尺度注意力和上下文特征增强策略,提升显著目标的置信度和定位准确性。最后,为验证本文方法的有效性,在ORSSD数据集、EORSSD数据集及ORSI-4199数据集上进行了试验分析,
分别降低了0.001 3~0.120 5、0.001~0.159 3和0.003 5~0.136 7,Sα分别提高了0.005 7~0.266 3、0.003~0.336 6和0.013 9~0.240 3,Fβ分别提高了0.031 4~0.339 1、0.023 2~0.517 8和0.004 3~0.328 9。结果表明,本文方法在检测精度和效率方面均显著优于现有方法,且能够有效应对遥感影像中的复杂场景和多变条件。
中图分类号:
谢亚坤, 赵耀纪, 涂佳星, 夏瑞丰, 冯德俊, 刘苏凝, 陈虹宇, 朱军. 融合边缘与全局特征的遥感影像显著性目标检测方法[J]. 测绘学报, 2025, 54(7): 1265-1279.
Yakun XIE, Yaoji ZHAO, Jiaxing TU, Ruifeng XIA, Dejun FENG, Suning LIU, Hongyu CHEN, Jun ZHU. Edge and global features integrated network for salient object detection in optical remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1265-1279.
表4
精度对比结果"
| 方法 | ORSSD | EORSSD | ORSI4199 | ||||||
|---|---|---|---|---|---|---|---|---|---|
↓ | Sα↑ | Fβ↑ | ↓ | Sα↑ | Fβ↑ | ↓ | Sα↑ | Fβ↑ | |
| ASTT | 0.009 0 | 0.935 0 | 0.906 0 | 0.006 0 | 0.925 0 | 0.874 0 | 0.029 0 | 0.883 0 | 0.869 0 |
| BAFSNet | 0.007 9 | 0.938 5 | 0.913 6 | 0.006 0 | 0.928 6 | 0.870 8 | — | — | — |
| BANet | 0.009 7 | 0.943 2 | 0.920 5 | 0.008 9 | 0.929 2 | 0.905 5 | 0.031 4 | 0.876 7 | 0.857 6 |
| CIFNet | 0.008 4 | 0.944 5 | 0.918 3 | 0.006 1 | 0.934 2 | 0.884 3 | — | — | — |
| CRNet | 0.009 1 | 0.938 9 | 0.910 7 | 0.006 3 | 0.937 0 | 0.887 3 | 0.033 5 | 0.866 9 | 0.866 9 |
| IP2GRNet | 0.009 0 | 0.940 6 | — | 0.007 1 | 0.924 8 | — | — | — | — |
| PCDNet | 0.009 4 | 0.944 4 | 0.913 8 | 0.006 9 | 0.934 6 | 0.883 0 | — | — | — |
| GLGCNet | 0.007 1 | 0.948 8 | 0.923 6 | 0.005 5 | 0.937 5 | 0.892 4 | 0.027 4 | 0.883 9 | 0.880 8 |
| 本文方法 | 0.007 2 | 0.951 2 | 0.948 1 | 0.005 4 | 0.937 7 | 0.919 6 | 0.027 0 | 0.889 4 | 0.876 9 |
表5
ORSI-4199不同属性定量对比"
| 方法 | BSO | CS | CSO | ISO | LCS | MSO | NSO | OC | SSO | 均值 |
|---|---|---|---|---|---|---|---|---|---|---|
| CorrNet | 0.859 7 | 0.872 5 | 0.831 1 | 0.821 4 | 0.838 9 | 0.869 1 | 0.878 7 | 0.862 9 | 0.849 5 | 0.853 8 |
| EMFINet | 0.918 6 | 0.901 3 | 0.908 4 | 0.907 2 | 0.830 7 | 0.851 8 | 0.839 9 | 0.831 5 | 0.818 1 | 0.867 5 |
| ERPNet | 0.906 3 | 0.889 3 | 0.888 1 | 0.890 4 | 0.835 1 | 0.862 1 | 0.867 7 | 0.814 2 | 0.818 6 | 0.863 5 |
| SeaNet | 0.879 2 | 0.884 6 | 0.860 3 | 0.857 6 | 0.848 6 | 0.862 5 | 0.887 6 | 0.854 7 | 0.835 7 | 0.863 4 |
| AESINet | 0.912 8 | 0.907 6 | 0.910 2 | 0.904 4 | 0.847 9 | 0.874 5 | 0.884 7 | 0.850 6 | 0.852 5 | 0.882 8 |
| 本文方法 | 0.920 4 | 0.914 1 | 0.917 5 | 0.905 7 | 0.852 9 | 0.879 3 | 0.886 4 | 0.878 4 | 0.869 1 | 0.891 5 |
| [1] | ZHENG Jianwei, QUAN Yueqian, ZHENG Hang, et al. ORSI salient object detection via cross-scale interaction and enlarged receptive field[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 3249764. |
| [2] |
余东行, 徐青, 赵传, 等. 注意力引导特征融合与联合学习的遥感影像场景分类[J]. 测绘学报, 2023, 52(4): 624-637. DOI: .
doi: 10.11947/j.AGCS.2023.20210659 |
|
YU Donghang, XU Qing, ZHAO Chuan, et al. Attention-guided feature fusion and joint learning for remote sensing image scene classification[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 624-637. DOI: .
doi: 10.11947/j.AGCS.2023.20210659 |
|
| [3] | 汪西莉, 梁正印, 刘涛. 基于特征注意力金字塔的遥感图像目标检测方法[J]. 遥感学报, 2023, 27(2): 492-501. |
| WANG Xili, LIANG Zhengyin, LIU Tao. Feature attention pyramid-based remote sensing image object detection method[J]. National Remote Sensing Bulletin, 2023, 27(2): 492-501. | |
| [4] | 梁烽, 张瑞祥, 柴英特, 等. 一种结合上下文与边缘注意力的SAR图像海陆分割深度网络方法[J]. 武汉大学学报(信息科学版), 2023, 48(8): 1286-1295. |
| LIANG Feng, ZHANG Ruixiang, CHAI Yingte, et al. A sea-land segmentation method for SAR images using context-aware and edge attention based CNNs[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1286-1295. | |
| [5] | 张艳邦, 张芬. 融合纹理和颜色特征的显著目标检测[J]. 计算机与数字工程, 2021, 49(9): 1793-1798, 1877. |
| ZHANG Yanbang, ZHANG Fen. Salient object detection based on texture and color features[J]. Computer & Digital Engineering, 2021, 49(9): 1793-1798, 1877. | |
| [6] | 邵凯旋, 童林, 吴帮吕, 等. 基于颜色差异计算的图像显著性检测算法研究[J]. 计算机与数字工程, 2022, 50(2): 394-398. |
| SHAO Kaixuan, TONG Lin, WU Banglü, et al. Research on image saliency detection algorithm based on color difference calculation[J]. Computer & Digital Engineering, 2022, 50(2): 394-398. | |
| [7] | ZHOU Li, YANG Zhaohui, ZHOU Zongtan, et al. Salient region detection using diffusion process on a two-layer sparse graph[J]. IEEE Transactions on Image Processing, 2017, 26(12): 5882-5894. |
| [8] | YUAN Yuchen, LI Changyang, KIM J, et al. Reversion correction and regularized random walk ranking for saliency detection[J]. IEEE Transactions on Image Processing, 2018, 27(3): 1311-1322. |
| [9] | 王震, 于万钧, 陈颖. 多尺度特征融合的RGB-D图像显著性目标检测[J]. 计算机工程与应用, 2024, 60(11): 242-250. |
| WANG Zhen, YU Wanjun, CHEN Ying. Multi-scale feature fusion saliency object detection based on RGB-D images[J]. Computer Engineering and Applications, 2024, 60(11): 242-250. | |
| [10] |
胡明洪, 李佳田, 姚彦吉, 等. 结合多路径的高分辨率遥感影像建筑物提取SER-UNet算法[J]. 测绘学报, 2023, 52(5): 808-817. DOI: .
doi: 10.11947/j.AGCS.2023.20210691 |
|
HU Minghong, LI Jiatian, YAO Yanji, et al. SER-UNet algorithm for building extraction from high-resolution remote sensing image combined with multipath[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 808-817. DOI: .
doi: 10.11947/j.AGCS.2023.20210691 |
|
| [11] |
胡功明, 杨春成, 徐立, 等. 改进U-Net的遥感图像语义分割方法[J]. 测绘学报, 2023, 52(6): 980-989. DOI: .
doi: 10.11947/j.AGCS.2023.20210684 |
|
HU Gongming, YANG Chuncheng, XU Li, et al. Improved U-Net remote sensing image semantic segmentation method[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(6): 980-989. DOI: .
doi: 10.11947/j.AGCS.2023.20210684 |
|
| [12] | LI Chongyi, CONG Runmin, HOU Junhui, et al. Nested network with two-stream pyramid for salient object detection in optical remote sensing images[EB/OL]. [2024-11-12]. https://arxiv.org/abs/1906.08462v1. |
| [13] | ZHANG Qijian, CONG Runmin, LI Chongyi, et al. Dense attention fluid network for salient object detection in optical remote sensing images[J]. IEEE Transactions on Image Processing, 2021, 30: 1305-1317. |
| [14] | TU Zhengzheng, WANG Chao, LI Chenglong, et al. ORSI salient object detection via multiscale joint region and boundary model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 3101359. |
| [15] | ZHENG Qingping, ZHENG Ling, BAI Yunpeng, et al. Boundary-aware network with two-stage partial decoders for salient object detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 3260825. |
| [16] | 赵卫东, 王辉, 柳先辉. 边缘信息增强的显著性目标检测网络[J]. 同济大学学报(自然科学版), 2024, 52(2): 293-302. |
| ZHAO Weidong, WANG Hui, LIU Xianhui. Edge enhancing network for salient object detection[J]. Journal of Tongji University (Natural Science), 2024, 52(2): 293-302. | |
| [17] | 连远锋, 石旭, 江澄. 基于多模态遥感影像的边缘感知引导显著性检测[J]. 太赫兹科学与电子信息学报, 2023, 21(3): 360-370. |
| LIAN Yuanfeng, SHI Xu, JIANG Cheng. Edge aware guidance saliency detection based on multi-modal remote sensing image[J]. Journal of Terahertz Science and Electronic Information Technology, 2023, 21(3): 360-370. | |
| [18] | WANG Zhen, GUO Jianxin, ZHANG Chuanlei, et al. Multiscale feature enhancement network for salient object detection in optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-19. |
| [19] | GONG Aojun, NIE Junfei, NIU Chen, et al. Edge and skeleton guidance network for salient object detection in optical remote sensing images[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(12): 7109-7120. |
| [20] | ZHOU Xiaofei, SHEN Kunye, WENG Li, et al. Edge-guided recurrent positioning network for salient object detection in optical remote sensing images[J]. IEEE Transactions on Cybernetics, 2023, 53(1): 539-552. |
| [21] | 杨世伟, 王永雄, 兰博天. 多尺度Transformer与层次化边界引导的显著性目标检测[J]. 计算机应用研究, 2022, 39(12): 3820-3824, 3836. |
| YANG Shiwei, WANG Yongxiong, LAN Botian. Hierarchical boundary guided multi-scale Transformer for salient object detection[J]. Application Research of Computers, 2022, 39(12): 3820-3824, 3836. | |
| [22] | 叶协康, 马晨阳, 陈小伟, 等. 基于全局注意力的多尺度显著性检测网络[J]. 计算机应用与软件, 2022, 39(2): 167-173. |
| YE Xiekang, MA Chenyang, CHEN Xiaowei, et al. Global attention-based multi-scale salient object detection network[J]. Computer Applications and Software, 2022, 39(2): 167-173. | |
| [23] | LI Gongyang, BAI Zhen, LIU Zhi, et al. Salient object detection in optical remote sensing images driven by transformer[J]. IEEE Transactions on Image Processing, 2023, 32: 5257-5269. |
| [24] | BAI Zhen, LI Gongyang, LIU Zhi. Global-local-global context-aware network for salient object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 198: 184-196. |
| [25] | WANG Wenhai, XIE Enze, LI Xiang, et al. PVT v2: improved baselines with pyramid vision transformer[J]. Computational Visual Media, 2022, 8(3): 415-424. |
| [26] | OUYANG Daliang, HE Su, ZHANG Guozhong, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Rhodes Island: IEEE, 2023: 1-5. |
| [27] | PERAZZI F, KRAHENBUHL P, PRITCH Y, et al. Saliency filters: Contrast based filtering for salient region detection[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012: 733-740. |
| [28] | FAN Dengping, CHENG Mingming, LIU Yun, et al. Structure-measure: a new way to evaluate foreground maps[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 4558-4567. |
| [29] | ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 1597-1604. |
| [30] | LI Gongyang, LIU Zhi, BAI Zhen, et al. Lightweight salient object detection in optical remote sensing images via feature correlation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-12. |
| [31] | LI Gongyang, LIU Zhi, ZHANG Xinpeng, et al. Lightweight salient object detection in optical remote-sensing images via semantic matching and edge alignment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 8049. |
| [32] | LIU Yanfeng, XIONG Zhitong, YUAN Yuan, et al. Distilling knowledge from super-resolution for efficient remote sensing salient object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 3267271. |
| [33] | ZENG Xiangyu, XU Mingzhu, HU Yijun, et al. Adaptive edge-aware semantic interaction network for salient object detection in optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 6722. |
| [34] | GAO Lina, LIU Bing, FU Ping, et al. Adaptive spatial tokenization Transformer for salient object detection in optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-15. |
| [35] | GU Yubin, XU Honghui, QUAN Yueqian, et al. ORSI salient object detection via bidimensional attention and full-stage semantic guidance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 3243769. |
| [36] | SUN Le, WANG Qing, CHEN Yuwen, et al. CRNet: channel-enhanced remodeling-based network for salient object detection in optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-14. |
| [37] | YANG Mo, LIU Ziyan, DONG Wen, et al. An important pick-and-pass gated refinement network for salient object detection in optical remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 6505-6516. |
| [38] | HUANG Kan, TIAN Chunwei, LIN C W. Progressive context-aware dynamic network for salient object detection in optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 3295992. |
| [1] | 董子博, 王竞雪, 卜丽静, 房琳, 许峥辉. MAFNet:基于多尺度空洞融合网络的遥感影像建筑物提取方法[J]. 测绘学报, 2025, 54(6): 1094-1106. |
| [2] | 李海峰, 郭旺, 吴梦伟, 彭程里, 朱庆, 刘瑜, 陶超. 视觉-语言联合的遥感地物概念表达与智能解译:原理、挑战与机遇[J]. 测绘学报, 2025, 54(5): 853-872. |
| [3] | 王超, 陈天宇, 张同, AhmedTanvir, 纪立强, 谢涛, 杨佳俊, 王帅. 基于全局差分增强模块和平衡惩罚损失的多源光学遥感影像变化检测[J]. 测绘学报, 2025, 54(5): 873-887. |
| [4] | 赵一鸣, 胡克林, 涂可龙, 卿雅娴, 杨超, 祁昆仑, 吴华意. 基于SAR与光学遥感影像融合的多标签场景分类方法[J]. 测绘学报, 2025, 54(5): 911-923. |
| [5] | 张新长, 齐霁, 陶超, 傅思扬, 郭明宁, 阮永检. 光学遥感影像去云研究进展、挑战与趋势[J]. 测绘学报, 2025, 54(4): 603-620. |
| [6] | 龚良雄, 李星华, 程远明, 赵兴友, 谢仁平, 王红根. 时空差异增强与自适应特征融合的轻量级遥感影像变化检测网络[J]. 测绘学报, 2025, 54(1): 136-153. |
| [7] | 李佳铃, 齐霁, 鲁伟鹏, 陶超. 面向城市功能区分类的光学遥感影像-OSM数据联合自监督学习方法[J]. 测绘学报, 2025, 54(1): 154-164. |
| [8] | 鄢薪, 慎利, 潘俊杰, 戴延帅, 王继成, 郑晓莉, 李志林. 多尺度特征融合与空间优化的弱监督高分遥感建筑变化检测[J]. 测绘学报, 2024, 53(8): 1586-1597. |
| [9] | 谢志伟, 翟帅智, 张丰源, 陈旻, 孙立双. 面向对象高分影像归纳式图神经网络分类法[J]. 测绘学报, 2024, 53(8): 1610-1623. |
| [10] | 杨军, 解恒静, 范红超, 闫浩文. 遥感影像目标检测多尺度熵神经网络架构搜索[J]. 测绘学报, 2024, 53(7): 1384-1400. |
| [11] | 殷吉崇, 武芳, 翟仁健, 邱越, 巩现勇, 行瑞星. 面向建筑物轮廓规则化的双路径边界约束与相对论生成对抗网络[J]. 测绘学报, 2024, 53(7): 1444-1457. |
| [12] | 宁晓刚, 张翰超, 张瑞倩. 遥感影像高可信智能不变检测技术框架与方法实践[J]. 测绘学报, 2024, 53(6): 1098-1112. |
| [13] | 顾海燕, 杨懿, 李海涛, 孙立坚, 丁少鹏, 刘世琦. 高分辨率遥感影像样本库动态构建与智能解译应用[J]. 测绘学报, 2024, 53(6): 1165-1179. |
| [14] | 彭代锋, 翟晨晨, 周顶蔚, 张永军, 管海燕, 臧玉府. 基于金字塔语义token全局信息增强的高分光学遥感影像变化检测[J]. 测绘学报, 2024, 53(6): 1195-1211. |
| [15] | 王继成, 郭安嵋, 慎利, 蓝天, 徐柱, 李志林. 多级对比学习下的弱监督高分遥感影像城市固废堆场提取[J]. 测绘学报, 2024, 53(6): 1212-1223. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||