| [1] |
WEI Haishuo, JIA Kun, WANG Qiao, et al. Real-time remote sensing detection framework of the Earth's surface anomalies based on a priori knowledge base[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 122: 103429.
|
| [2] |
Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovern mental Panel on Climate Change[R]. Zurich: IPCC, 2023: 35-115. DOI: .
doi: 10.59327/IPCC/AR6-9789291691647
|
| [3] |
黄顺祥. 大气污染与防治的过去、现在及未来[J]. 科学通报, 2018, 63(10): 895-919.
|
|
HUANG Shunxiang. The past, present, and future of air pollution prevention and control[J]. Scientific Bulletin, 2018, 63(10): 895-919.
|
| [4] |
施斌, 张泰银. 岩土体灾变感知与应用[J]. 中国科学:技术科学, 2023, 53(10): 1639-1651.
|
|
SHI Bin, ZHANG Taiyin. Perception and application of rock and soil mass disasters[J]. Chinese Science: Technical Science, 2023, 53(10): 1639-1651.
|
| [5] |
BEHMEL S, DAMOUR M, LUDWIG R, et al. Water quality monitoring strategies: a review and future perspectives[J]. Science of The Total Environment, 2016, 571: 1312-1329.
|
| [6] |
李德仁. 从珞珈系列卫星到东方慧眼星座[J]. 武汉大学学报(信息科学版), 2023, 48(10): 1557-1565.
|
|
LI Deren. From the Luojia series satellites to the oriental smart eye constellation[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1557-1565.
|
| [7] |
SHAH-HOSSEINI R, SAFARI A, HOMAYOUNI S. Natural hazard damage detection based on object-level support vector data description of optical and SAR Earth observations[J]. International Journal of Remote Sensing, 2017, 38(11): 3356-3374.
|
| [8] |
LI Chengfan, ZHANG Zixuan, LIU Lan, et al. A novel deep multi-instance convolutional neural network for disaster classification from high-resolution remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 2098-2114.
|
| [9] |
SALESKA S R, DIDAN K, HUETE A R, et al. Amazon forests green-up during 2005 drought[J]. Science, 2007, 318(5850): 612.
|
| [10] |
ANNIBALLE R, NOTO F, SCALIA T, et al. Earthquake damage mapping: an overall assessment of ground surveys and VHR image change detection after L'Aquila 2009 earthquake[J]. Remote Sensing of Environment, 2018, 210: 166-178.
|
| [11] |
SENF C, SEIDL R. Mapping the forest disturbance regimes of Europe[J]. Nature Sustainability, 2021, 4(1): 63-70.
|
| [12] |
CASAGLI N, INTRIERI E, TOFANI V, et al. Landslide detection, monitoring and prediction with remote-sensing techniques[J]. Nature Reviews Earth and Environment, 2023, 4(1): 51-64.
|
| [13] |
李德仁, 沈欣, 龚健雅, 等. 论我国空间信息网络的构建[J]. 武汉大学学报(信息科学版), 2015, 40(6): 711-715, 766.
|
|
LI Deren, SHEN Xin, GONG Jianya, et al. On construction of China's space information network[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 711-715, 766.
|
| [14] |
王桥. 地表异常遥感探测与即时诊断方法研究框架[J]. 测绘学报, 2022, 51(7): 1141-1152. DOI: .
doi: 10.11947/j.AGCS.2022.20220124
|
|
WANG Qiao. Research framework of remote sensing monitoring and real-time diagnosis of earth surface anomalies[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1141-1152. DOI: .
doi: 10.11947/j.AGCS.2022.20220124
|
| [15] |
李德仁, 王密, 杨芳. 新一代智能测绘遥感科学试验卫星珞珈三号01星[J]. 测绘学报, 2022, 51(6): 789-796. DOI: .
doi: 10.11947/j.AGCS.2022.20220184
|
|
LI Deren, WANG Mi, YANG Fang. A new generation of intelligent mapping and remote sensing scientific test satellite Luojia-3 01[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 789-796. DOI: .
doi: 10.11947/j.AGCS.2022.20220184
|
| [16] |
王密, 杨芳. 智能遥感卫星与遥感影像实时服务[J]. 测绘学报, 2019, 48(12): 1586-1594. DOI: .
doi: 10.11947/j.AGCS.2019.20190454
|
|
WANG Mi, YANG Fang. Intelligent remote sensing satellite and remote sensing image real-time service[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1586-1594. DOI: .
doi: 10.11947/j.AGCS.2019.20190454
|
| [17] |
侯霞, 刘哲绮, 常亦迪, 等. 卫星激光通信技术发展现状与趋势分析[J]. 中国激光, 2024, 51(11): 231-244.
|
|
HOU Xia, LIU Zheqi, CHANG Yidi, et al. Analysis on development status and trend of space laser communication technology[J]. Chinese Journal of Lasers, 2024, 51(11): 231-244.
|
| [18] |
王行行, 霍占伟, 牟洪元, 等. 吉林一号卫星激光通信数据传输试验及应用[J]. 国际太空, 2024(2): 42-49.
|
|
WANG Xingxing, HUO Zhanwei, MOU Hongyuan, et al. Laser communication data transmission experiment and application of Jilin-1 satellite[J]. Space International, 2024(2): 42-49.
|
| [19] |
YANG Yuanxi, LIU Li, LI Jinlong. Featured services and performance of BDS-3[J]. Science Bulletin, 2021, 66(20): 2135-2143.
|
| [20] |
RŮŽIČKA V, VAUGHAN A, DE MARTINI D, et al. RaVÆn: unsupervised change detection of extreme events using ML on-board satellites[J]. Scientific Reports, 2022, 12: 16939.
|
| [21] |
李德仁, 沈欣. 我国天基信息实时智能服务系统发展战略研究[J]. 中国工程科学, 2020, 22(2): 138-143.
|
|
LI Deren, SHEN Xin. Research on the development strategy of real time and intelligent space-based information service system in China[J]. Strategic Study of CAE, 2020, 22(2): 138-143.
|
| [22] |
GANDHI G M, PARTHIBAN S, THUMMALU N, et al. Ndvi: vegetation change detection using remote sensing and GIS-a case study of Vellore district[J]. Procedia Computer Science, 2015, 57: 1199-1210.
|
| [23] |
SU Jinya, COOMBES M, LIU Cunjia, et al. Machine learning-based crop drought mapping system by UAV remote sensing RGB imagery[J]. Unmanned Systems, 2020, 8(1): 71-83.
|
| [24] |
XU Yichu, ZHANG Lefei, DU Bo, et al. Hyperspectral anomaly detection based on machine learning: an overview[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 3351-3364.
|
| [25] |
WANG Wei, ZHANG Baoju, WANG Dan, et al. Anomaly detection based on probability density function with Kullback-Leibler divergence[J]. Signal Processing, 2016, 126: 12-17.
|
| [26] |
RŽIČKA V, VAUGHAN A, DE MARTINI D, et al. RaVÆn: unsupervised change detection of extreme events using ML on-board satellites[J]. Scientific Reports, 2022, 12: 16939.
|
| [27] |
XU Jianming, YAN Kai, FAN Zaiwang, et al. Toward a novel method for general on-orbit earth surface anomaly detection leveraging large vision models and lightweight priors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-21.
|
| [28] |
GAO Bocai. NDWI: a normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996, 58(3): 257-266.
|
| [29] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
| [30] |
HUANG Xin, ZHU Tingting, ZHANG Liangpei, et al. A novel building change index for automatic building change detection from high-resolution remote sensing imagery[J]. Remote Sensing Letters, 2014, 5(8): 713-722.
|
| [31] |
MORAVEC D, KOMÁREK J, LÓPEZ-CUERVO MEDINA S, et al. Effect of atmospheric corrections on NDVI: intercomparability of Landsat 8, Sentinel-2, and UAV sensors[J]. Remote Sensing, 2021, 13(18): 3550.
|
| [32] |
NAGOL J R, VERMOTE E F, PRINCE S D. Effects of atmospheric variation on AVHRR NDVI data[J]. Remote Sensing of Environment, 2009, 113(2): 392-397.
|
| [33] |
KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]//Proceedings of 2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 3992-4003.
|
| [34] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. [2024-10-23]. https://api.semanticscholar.org/CorpusID:225039882.
|
| [35] |
BAHRI Y, DYER E, KAPLAN J, et al. Explaining neural scaling laws[J]. Proceedings of the National Academy of Science, 2024, 121(27): e2311878121.
|
| [36] |
HE Kaiming, FAN Haoqi, WU Yuxin, et al. Momentum contrast for unsupervised visual representation learning[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 9726-9735.
|
| [37] |
SOM R K. Practical sampling techniques[M]. Boca Raton: CRC press, 1995.
|
| [38] |
CARVALHO JÚNIOR O A, GUIMARÃES R F, GILLESPIE A R, et al. A new approach to change vector analysis using distance and similarity measures[J]. Remote Sensing, 2011, 3(11): 2473-2493.
|
| [39] |
WARNER T. Hyperspherical direction cosine change vector analysis[J]. International Journal of Remote Sensing, 2005, 26(6): 1201-1215.
|
| [40] |
GOLDSTEIN M, DENGEL A. Histogram-based outlier score (HBOS): a fast unsupervised anomaly detection algorithm[J]. KI-2012: Poster and Demo Track, 2012, 1: 59-63.
|
| [41] |
ZHAO Y, NASRULLAH Z, LI Z. PyOD: a Python toolbox for scalable outlier detection[J]. Journal of Machine Learning Research, 2019, 20(96): 1-7.
|