测绘学报 ›› 2023, Vol. 52 ›› Issue (7): 1045-1058.doi: 10.11947/j.AGCS.2023.20220498
• 高光谱遥感技术专刊 • 下一篇
刘银年1,2, 薛永祺1,2
收稿日期:
2022-08-15
修回日期:
2023-05-04
发布日期:
2023-07-31
作者简介:
刘银年(1971-),男,研究员,博士生导师,研究方向为高光谱遥感技术。E-mail:ynliu@mail.sitp.ac.cn
基金资助:
LIU Yinnian1,2, XUE Yongqi1,2
Received:
2022-08-15
Revised:
2023-05-04
Published:
2023-07-31
Supported by:
摘要: 星载高光谱遥感技术可通过光谱特征对地物进行大范围快速精细识别,在自然资源勘查、生态环境保护、精细农业、碳排放监测和地表异常即时探测等方面有着广阔的应用前景。自20世纪80年代初期美国NASA研制出第一台机载高光谱成像仪以来,高光谱成像技术的研究发展日益得到重视。与机载高光谱载荷相比,星载高光谱载荷的研制难度大幅增加,但其全球范围快速探测识别的巨大应用价值,成为国际上竞相攻克的科技制高点,也是人类探测地球感知万物的重要手段。我国高分五号卫星的成功发射,使国际上星载高光谱成像技术的水平达到了一个新的高度,在助力碳排放、土壤有机质、土壤重金属污染、水质微量污染和大范围地球深部找矿等应用方面产生诸多突破。本文回顾了星载高光谱载荷技术的发展历程,总结了星载宽谱宽幅高光谱载荷的要点、关键技术及应用情况。结合团队在该领域多年实际开展的工作,凝炼提出了静止轨道高光谱、荧光超光谱和高光谱即时遥感探测几个重要发展方向及其关键技术,为星载高光谱载荷研究工作的重大发展提供一些重点有益的参考。
中图分类号:
刘银年, 薛永祺. 星载高光谱成像载荷发展及关键技术[J]. 测绘学报, 2023, 52(7): 1045-1058.
LIU Yinnian, XUE Yongqi. Development and key technologies of spaceborne hyperspectral imaging payload[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1045-1058.
[1] UNGAR S G, PEARLMAN J S, MENDENHALL J A, et al. Overview of the earth observing one (EO-1) mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6):1149-1159. [2] LIU Yinnian, SUN Dexin, HU Xiaoning, et al. The advanced hyperspectral imager:aboard China's GaoFen-5 satellite[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(4):23-32. [3] VANGI E, D'AMICO G, FRANCINI S, et al. The new hyperspectral satellite PRISMA:imagery for forest types discrimination[J]. Sensors (Basel, Switzerland), 2021, 21(4):1182. [4] GUANTER L, KAUFMANN H, SEGL K, et al. The EnMAP spaceborne imaging spectroscopy mission for earth observation[J]. Remote Sensing, 2015, 7(7):8830-8857. [5] MATSUNAGA T, YAMAMOTO S, KASHIMURA O, et al. Operation plan study for Japanese future hyperspectral mission:HISUI[C]//Proceedings of the 34th International Symposium on Remote Sensing of Environment. Sydney:[s.n.], 2011. [6] GOSWAMI J, ANNADURAI M. Chandrayaan-1:India's first planetary science mission to the Moon[J]. Current science, 2009, 96(4):486-491. [7] GUNTER D. HySIS, Gunter's space page[EB/OL].[2023-07-01]. https://space.skyrocket.de/doc_sdat/hysis.htm. [8] MAHALINGAM S, SRINIVAS P, DEVI P K, et al. Reflectance based vicarious calibration of HySIS sensors and spectral stability study over pseudo-invariant sites[C]//Proceedings of 2019 IEEE Recent Advances in Geoscience and Remote Sensing:Technologies, Standards and Applications (TENGARSS). Kochi:IEEE, 2020:132-136. [9] BROVKINA O, HANUŠ J, ZEMEK F, et al. Evaluating the potential of satellite hyperspectral resurs-P data for forest species classification[J]. ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B1:443-448. [10] 李志忠, 汪大明, 刘德长,等. 高光谱遥感技术及资源勘查应用进展[J]. 地球科学, 2015, 40(8):1287-1294. LI Zhizhong, WANG Daming, LIU Dechang, et al. Hyperspectral remote sensing technology and its progress in resources exploration[J]. Earth Science, 2015, 40(8):1287-1294. [11] YU Fangfang, WU Xiangqian, RAMA V R M K, et al. Diurnal and scan angle variations in the calibration of GOES imager infrared channels[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1):671-683. [12] UPRETY S, CAO Changyong, SHAO Xi. Radiometric consistency between GOES-16 ABI and VIIRS on Suomi NPP and NOAA-20[J]. Journal of Applied Remote Sensing, 2020, 14(3):032407. [13] KRIMCHANSKY A, MACHI D, CAUFFMAN S A, et al. Next-generation geostationary operational environmental satellite (GOES-R series):a space segment overview[C]//Proceedings of 2004 SPIE Conference of Sensors, Systems and Next-Generation Satellites VIII. Maspalomas:SPIE, 2004. [14] PORCAR-CASTELL A, MALEŃOVSKY Z, MAGNEY T, et al. Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science[J]. Nature Plants, 2021, 7(8):998-1009. [15] CUI Yaoping, XIAO Xiangming, ZHANG Yao, et al. Temporal consistency between gross primary production and solar-induced chlorophyll fluorescence in the ten most populous megacity areas over years[J]. Scientific Reports, 2017, 7:14963. [16] KIMM H, GUAN Kaiyu, JIANG Chongya, et al. A physiological signal derived from Sun-induced chlorophyll fluorescence quantifies crop physiological response to environmental stresses in the U.S. Corn Belt[J]. Environmental Research Letters, 2021, 16(12):124051. [17] 范一大, 吴玮, 王薇,等. 中国灾害遥感研究进展[J]. 遥感学报, 2016, 20(5):1170-1184. FAN Yida, WU Wei, WANG Wei, et al. Research progress of disaster remote sensing in China[J]. Journal of Remote Sensing, 2016, 20(5):1170-1184. [18] 眭海刚, 刘超贤, 刘俊怡,等. 典型自然灾害遥感快速应急响应的思考与实践[J]. 武汉大学学报(信息科学版), 2020, 45(8):1137-1145. SUI Haigang, LIU Chaoxian, LIU Junyi, et al. Reflection and exploration of rapid remote sensing emergency response for typical natural disasters[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8):1137-1145. [19] WANG Wanting. An improved algorithm for small and cool fire detection using MODIS data:a preliminary study in the southeastern United States[J]. Remote Sensing of Environment, 2007, 108(2):163-170. [20] VANE G, GOETZ A F H, WELLMAN J B. Airborne imaging spectrometer:a new tool for remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 1984, GE-22(6):546-549. [21] VANE G. First results from the airborne visible/infrared imaging spectrometer[C]//Proceedings of 1987 SPIE conference of Imaging Spectroscopy II. San Diego:SPIE, 1987. [22] BABEY S K, ANGER C D. A compact airborne spectrographic imager[C]//Proceedings of the 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium. Vancouver:IEEE, 2002:1028-1031. [23] MAKISARA K, MEINANDER M, RANTASUO M, et al. Airborne imaging spectrometer for applications[C]//Proceedings of IGARSS'93-IEEE International Geoscience and Remote Sensing Symposium. Tokyo:IEEE, 2002:479-481. [24] COCKS T, JENSSEN R, STEWART A, et al. The HyMapTM airborne hyperspectral sensor:the system, calibration and performance[C]//Proceedings of the 1st EARSeL workshop on Imaging Spectroscopy. Clayton:[s.n.],1998:37-42. [25] MAUSER W. The airborne visible/infrared imaging spectrometer AVIS-2 multiangular und hyperspectral data for environmental analysis[C]//Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium.Toulouse:IEEE,2004:2020-2022. [26] LUCEY P, WILLIAMS T J, HORTON K. Coastal research imaging spectrometer[R]. Washington D.C.:NASA, 2002. [27] WANG Jianyu, XUE Yongqi. Airborne imaging spectrometers developed in China[J].Hyperspectral Remote Sensing and Application. International Society for Optics and Photonics, 1998, 3502:12-22. [28] 童庆禧. 与遥感发展同行:纪念《遥感学报》更名25周年[J]. 遥感学报, 2021, 25(1):1-14. TONG Qingxi. Going along with the progress of remote sensing:for the 25th anniversary of renaming of National Remote Sensing Bulletin[J]. Journal of Remote Sensing, 2021, 25(1):1-14. [29] FREEMAN L J, RUDDER C C, THOMAS P. MightySat II:on-orbit lab bench for air force research laboratory[C]//Proceedings of 2000 Small Satellites in Triumph and Tribulation:A Year of Paradoxes. Logan:[s.n.], 2000. [30] OTTEN III L J, SELLAR R G, RAFERT B. MightySat II:Fourier-transform hyperspectral imager payload performance[J].Advanced and Next-Generation Satellites. SPIE, 1995, 2583:566-575. [31] FOLKMAN M, PEARLMAN J, LIAO L, et al. EO-1/Hyperion hyperspectral imager design, development, characterization and calibration[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2001,6:4151:40-51. [32] PEARLMAN J, SEGAL C, LIAO L B, et al. Development and operations of the EO-1 Hyperion imaging spectrometer[C]//Proceedings of 2000 SPIE Conference of Earth Observing Systems. San Diego:SPIE, 2000. [33] BARNSLEY M J, SETTLE J J, CUTTER M A, et al. The PROBA/CHRIS mission:a low-cost smallsat for hyperspectral multiangle observations of the Earth surface and atmosphere[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7):1512-1520. [34] TESTON F C, VUILLEUMIER P, HARDY D, et al. The PROBA-1 microsatellite[J].International Society for Optics and Photonics, 2004, 5546:132-140. [35] ZUREK R W, SMREKAR S E. An overview of the Mars Reconnaissance Orbiter (MRO) science mission[J]. Journal of Geophysical Research, 2007, 112(E5):E05S01. [36] MURCHIE S, ARVIDSON R, BEDINI P, et al. Compact reconnaissance imaging spectrometer for Mars (CRISM) on Mars reconnaissance orbiter (MRO)[J]. Journal of Geophysical Research Planets, 2007, 112(e5):E05S03-1. [37] PIETERS C M, BOARDMAN J, BURATTI B, et al. The Moon mineralogy mapper (M3) on chandrayaan-1[J]. Current Science, 2009,1:500-505. [38] KRUTZ D, MVLLER R, KNODT U, et al. The instrument design of the DLR earth sensing imaging spectrometer (DESIS)[J]. Sensors (Basel, Switzerland), 2019, 19(7):E1622. [39] PIGNATTI S, PALOMBO A, PASCUCCI S, et al. The PRISMA hyperspectral mission:science activities and opportunities for agriculture and land monitoring[C]//Proceedings of 2013 IEEE International Geoscience and Remote Sensing Symposium.Melbourne:IEEE, 2014:4558-4561. [40] TACHIKAWA T, KASHIMURA O, TANII J, et al. Outline and prospect of hyperspectral imager suite (HISUI)[J].Journal of the Remote Sensing Society of Japan, 2012, 32(5):280-286. [41] MATSUNAGA T, IWASAKI A, TSUCHIDA S, et al. Hyperspectral image suite (HISUI)[M]. New York:John Wiley & Sons, Ltd, 2015. [42] TANII J, ITO Y, IWASAKI A, et al. Flight model of HISUI hyperspectral sensor onboard ISS (international space station)[C]//Proceedings of 2017 Sensors, Systems, and Next-Generation Satellites XXI.Warsaw:SPIE, 2017. [43] SANG B, SCHUBERT J, KAISER S, et al. The EnMAP hyperspectral imaging spectrometer:instrument concept, calibration, and technologies[C]//Proceedings of 2008 Imaging Spectrometry. San Diego:SPIE, 2008. [44] 刘银年. 高光谱成像遥感载荷技术的现状与发展[J]. 遥感学报, 2021, 25(1):439-459. LIU Yinnian. Development of hyperspectral imaging remote sensing technology[J]. Journal of Remote Sensing, 2021, 25(1):439-459. [45] 郑亲波,危峻. SZ-3中分辨率成像光谱仪[C]//大珩先生九十华诞文集暨中国光学学会2004年学术大会论文集.杭州:[s.n.],2004:1486-1489. ZHENG Qinbo, WEI Jun. Medium resolution imaging spectro-radiometer (mris) on sz-3 spacecraft[C]//Proceedings of the 90th Birthday of Mr. Da Heng and the 2004 Academic Conference of the Chinese Optical Society. Hangzhou:[s.n.],2004:1486-1489. [46] ZHAO Xiang, XIAO Zhengqing, KANG Qian, et al. Overview of the Fourier transform hyperspectral imager (HSI) boarded on HJ-1A satellite[C]//Proceedings of 2010 IEEE International Geoscience and Remote Sensing Symposium.Honolulu:IEEE, 2010:4272-4274. [47] LI Xueke, WU Taixia, LIU Kai, et al. Evaluation of the Chinese fine spatial resolution hyperspectral satellite TianGong-1 in urban land-cover classification[J]. Remote Sensing, 2016, 8(5):438. [48] 刘银年, 孙德新, 韩波,等. 资源一号02D卫星可见短波红外高光谱相机研制[J]. 航天器工程, 2020, 29(6):85-92. LIU Yinnian, SUN Dexin, HAN Bo, et al. Development of advanced visible and short-wave infrared hyperspectral imager onboard ZY-1-02D satellite[J]. Spacecraft Engineering, 2020, 29(6):85-92. [49] 王跃明, 贾建鑫, 何志平,等. 若干高光谱成像新技术及其应用研究[J]. 遥感学报, 2016, 20(5):850-857. WANG Yueming, JIA Jianxin, HE Zhiping, et al. Key technologies of advanced hyperspectral imaging system[J]. Journal of Remote Sensing, 2016, 20(5):850-857. [50] 李先怡, 范海生, 潘申林,等. 珠海一号高光谱卫星数据及应用概况[J]. 卫星应用, 2019(8):12-18. LI Xianyi, FAN Haisheng, PAN Shenlin, et al. Data and application of Zhuhai-1 hyperspectral satellite[J]. Satellite Application, 2019(8):12-18. [51] 刘银年."高分五号" 卫星可见短波红外高光谱相机的研制[J]. 航天返回与遥感, 2018, 39(3):25-28. LIU Yinnian. Visible-shortwave infrared hyperspectral imager of GF-5 satellite[J]. Spacecraft Recovery & Remote Sensing, 2018, 39(3):25-28. [52] 刘银年, 孙德新, 胡晓宁,等. 高分五号可见短波红外高光谱相机设计与研制[J]. 遥感学报, 2020, 24(4):333-344. LIU Yinnian, SUN Dexin, HU Xiaoning, et al. Development of visible and short-wave infrared hyperspectral imager onboard GF-5 satellite[J]. Journal of Remote Sensing, 2020, 24(4):333-344. [53] 刘银年, 孙德新, 曹开钦,等. 高分五号可见短波红外高光谱相机在轨辐射性能评估[J]. 遥感学报, 2020, 24(4):352-359. LIU Yinnian, SUN Dexin, CAO Kaiqin, et al. Evaluation of GF-5 AHSI on-orbit instrument radiometric performance[J]. Journal of Remote Sensing, 2020, 24(4):352-359. [54] AKTARUZZAMAN M. Simulation and correction of spectral smile effect and its influence on hyperspectral mapping[C]//Proceedings of 2008 Conference of ITC. Twente:ITC,2008. [55] CAIRNS B, RUSSELL E E, LAVEIGNE J D, et al. Research scanning polarimeter and airborne usage for remote sensing of aerosols[C]//Proceedings of 2003 Polarization Science and Remote Sensing. San Diego:SPIE, 2003. [56] DELL'ENDICE F, NIEKE J, SCHLÄPFER D, et al. Scene-based method for spatial misregistration detection in hyperspectral imagery[J]. Applied Optics, 2007, 46(15):2803. [57] YOKOYA N, MIYAMURA N, IWASAKI A. Detection and correction of spectral and spatial misregistrations for hyperspectral data using phase correlation method[J]. Applied Optics, 2010, 49(24):4568. [58] 杨波. 宽幅高光谱成像光学技术研究[D].北京:中国科学院大学, 2011. YANG Bo. Study on optical technology of wide-width hyperspectral imaging[D]. Beijing:University of Chinese Academy of Sciences, 2011. [59] HU Binlin, ZHANG Jing, CAO Kaiqin, et al. Research on the etalon effect in dispersive hyperspectral VNIR imagers using back-illuminated CCDs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9):5481-5494. [60] HU Binlin, SUN Dexin, LIU Yinnian. A novel method to remove fringes for dispersive hyperspectral VNIR imagers using back-illuminated CCDs[J]. Remote Sensing, 2018, 10(2):79. [61] 董新丰, 甘甫平, 李娜,等. 高分五号高光谱影像矿物精细识别[J]. 遥感学报, 2020, 24(4):454-464. DONG Xinfeng, GAN Fuping, LI Na, et al. Fine mineral identification of GF-5 hyperspectral image[J]. Journal of Remote Sensing, 2020, 24(4):454-464. [62] 周毅, 刘瑶, 田淑芳. 资源一号02D卫星高光谱数据水体透明度反演研究[J]. 航天器工程, 2020, 29(6):155-161. ZHOU Yi, LIU Yao, TIAN Shufang. Water transparency retrieval based on hyperspectral data of ZY-1-02D satellite[J]. Spacecraft Engineering, 2020, 29(6):155-161. [63] JIAO Leilei, SUN Weiwei, YANG Gang, et al. A hierarchical classification framework of satellite multispectral/hyperspectral images for mapping coastal wetlands[J]. Remote Sensing, 2019, 11(19):2238. [64] WU Fuyu, WANG Xue, TAN Kun, et al. Assessment of heavy metal pollution in agricultural soil around a gold mine area in Yitong County[C]//Proceedings of 2020 IEEE International Geoscience and Remote Sensing Symposium(IGARSS).Waikoloa:IEEE, 2021:5034-5037. [65] YE Bei, TIAN Shufang, CHENG Qiuming, et al. Application of lithological mapping based on advanced hyperspectral imager (AHSI) imagery onboard Gaofen-5(GF-5) satellite[J]. Remote Sensing, 2020, 12(23):3990. [66] IRAKULIS-LOITXATE I, GUANTER L, LIU Yinnian, et al. Satellite-based survey of extreme methane emissions in the Permian basin[J]. Science Advances, 2021, 7(27):eabf4507. [67] 董瑶海. 风云四号气象卫星及其应用展望[J]. 上海航天, 2016, 33(2):1-8. DONG Yaohai. FY-4 meteorological satellite and its application prospect[J]. Aerospace Shanghai, 2016, 33(2):1-8. [68] 张志清, 陆风, 方翔,等. FY-4卫星应用和发展[J]. 上海航天, 2017, 34(4):8-19. ZHANG Zhiqing, LU Feng, FANG Xiang, et al. Application and development of FY-4 meteorological satellite[J]. Aerospace Shanghai, 2017, 34(4):8-19. [69] SCHMIT T J, GRIFFITH P, GUNSHOR M M, et al. A closer look at the ABI on the GOES-R series[J]. Bulletin of the American Meteorological Society, 2017, 98(4):681-698. [70] GOODMAN S J, BLAKESLEE R J, KOSHAK W J, et al. The GOES-R geostationary lightning mapper (GLM)[J]. Atmospheric Research, 2013, 125:34-49. [71] HOLMLUND K, GRANDELL J, SCHMETZ J, et al. Meteosat third generation (MTG):continuation and innovation of observations from geostationary orbit[J]. Bulletin of the American Meteorological Society, 2021, 102(5):E990-E1015. [72] RODRIGUEZ A, STUHLMANN R, TJEMKES S, et al. Meteosat third generation:mission and system concepts[C]//Proceedings of 2009 Infrared Spaceborne Remote Sensing and Instrumentation. San Diego:SPIE, 2009. [73] BESSHO K, DATE K, HAYASHI M, et al. An introduction to Himawari-8/9:Japan's new-generation geostationary meteorological satellites[J]. Journal of the Meteorological Society of Japan,2016, 94(2):151-183. [74] MOHAMMED G H, COLOMBO R, MIDDLETON E M, et al.Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation:50 years of progress[J]. Remote Sensing of Environment, 2019, 231:111177. [75] MERONI M, ROSSINI M, GUANTER L, et al. Remote sensing of solar-induced chlorophyll fluorescence:review of methods and applications[J]. Remote Sensing of Environment, 2009, 113(10):2037-2051. [76] ZHANG Lifu, WANG Siheng, HUANG Changping. Top-of-atmosphere hyperspectral remote sensing of solar-induced chlorophyll fluorescence:a review of methods[J]. Journal of Remote Sensing, 2018, 22:1-12. [77] WALTHER S, VOIGT M, THUM T, et al. Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photo synthesis and greenness dynamics in boreal evergreen forests[J]. Global Change Biology, 2016, 22(9):2979-2996. [78] MERONI M, ROSSINI M, PICCHI V, et al. Assessing steady-state fluorescence and PRI from hyperspectral proximal sensing as early indicators of plant stress:the case of ozone exposure[J]. Sensors, 2008, 8(3):1740-1754. [79] XIAN Chenjie, HE Li, HE Zhengwei, et al. Assessing the response of satellite solar-induced chlorophyll fluorescence and NDVI to impacts of heat waves on winter wheat in the North China plain[J]. Advances in Meteorology, 2020, 2020:1-14. [80] SONG Lian, GUANTER L, GUAN Kaiyu, et al. Satellite Sun-induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo-Gangetic Plains[J]. Global Change Biology, 2018, 24(9):4023-4037. [81] SUN Ying, FU Rong, DICKINSON R, et al. Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence:insights from two contrasting extreme events[J]. Journal of Geophysical Research:Biogeosciences, 2015, 120(11):2427-2440. [82] YOSHIDA Y, JOINER J, TUCKER C, et al.The 2010 Russian drought impact on satellite measurements of solar-induced chlorophyll fluorescence:insights from modeling and comparisons with parameters derived from satellite reflectances[J]. Remote Sensing of Environment, 2015, 166:163-177. [83] GOLAN K, RUBINOWSKA K, KMIEĆ K, et al. Impact of scale insect infestation on the content of photosynthetic pigments and chlorophyll fluorescence in two host plant species[J]. Arthropod-Plant Interactions, 2015, 9(1):55-65. [84] ZHANG Zhaoyin, WANG Songha, QIU Bo, et al. Retrieval of sun-induced chlorophyll fluorescence and advancements in carbon cycle application[J].Journal of Remote Sensing, 2019, 23:41-56. [85] GUAN Kaiyu, BERRY J A, ZHANG Yongguang, et al. Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence[J]. Global Change Biology, 2016, 22(2):716-726. [86] 刘雷震, 武建军, 周洪奎,等. 叶绿素荧光及其在水分胁迫监测中的研究进展[J]. 光谱学与光谱分析, 2017, 37(9):2780-2787. LIU Leizhen, WU Jianjun, ZHOU Hongkui, et al.Chlorophyll fluorescence and its progress in detecting water stress[J]. Spectroscopy and Spectral Analysis, 2017, 37(9):2780-2787. [87] PORCAR-CASTELL A, TYYSTJÄRVI E, ATHERTON J, et al. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications:mechanisms and challenges[J]. Journal of Experimental Botany, 2014, 65(15):4065-4095. [88] 王桥. 地表异常遥感探测与即时诊断方法研究框架[J]. 测绘学报,2022,51(7):1141-1152. DOI:10.11947/J.AGCS.2022.20220124. WANG Qiao. Research framework of remote sensing monitoring and real-time diagnosis of earth surface anomalies[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1141-1152. DOI:10.11947/j.AGCS.2022.20220124. [89] WANG Kexian, ZHENG Shunyi, LI Rui,et al.A deep double-channel dense network for hyperspectral image classifica-tion[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4):46-62. |
[1] | 余俊鹏, 吴伟东, 孙佳明, 满益云, 沈刚. 附加傅里叶补偿项的卫星遥感影像RFM平差方法[J]. 测绘学报, 2022, 51(1): 127-134. |
[2] | 周苗, 常晓涛, 朱广彬, 瞿庆亮, 刘伟. 卫星重力与光学遥感组合的念青唐古拉山脉冰川变化分析[J]. 测绘学报, 2021, 50(10): 1331-1337. |
[3] | 沈焕锋, 李同文. 大气PM2.5遥感制图研究进展[J]. 测绘学报, 2019, 48(12): 1624-1635. |
[4] | 丁璐, 童晓冲, 秦志远, 赖广陵. 三轴稳定型静止轨道遥感卫星指向确定的地标匹配方法[J]. 测绘学报, 2018, 47(11): 1506-1517. |
[5] | 曾添, 隋立芬, 贾小林, 计国锋, 张清华. 风云3C增强北斗定轨试验结果与分析[J]. 测绘学报, 2017, 46(7): 824-833. |
[6] | 王密, 程宇峰, 常学立, 龙小祥, 李庆鹏. 高分四号静止轨道卫星高精度在轨几何定标[J]. 测绘学报, 2017, 46(1): 53-61. |
[7] | 阚希, 张永宏, 曹庭, 王剑庚, 田伟. 利用多光谱卫星遥感和深度学习方法进行青藏高原积雪判识[J]. 测绘学报, 2016, 45(10): 1210-1221. |
[8] | 严明, 王智勇, 汪承义, 于冰洋. 大气折射对光学卫星遥感影像几何定位的影响分析[J]. 测绘学报, 2015, 44(9): 995-1002. |
[9] | 赵世湖, 尹丹, 窦显辉, 郭莉. 单景卫星遥感影像目标运动信息提取技术[J]. 测绘学报, 2015, 44(3): 316-322. |
[10] | 龚辉,姜挺,江刚武,张锐,贾博. 基于四元数微分方程的高分辨率卫星遥感影像外方位元素求解[J]. 测绘学报, 2012, 41(3): 0-416. |
[11] | 袁修孝,余翔. 高分辨率卫星遥感影像姿态角系统误差检校[J]. 测绘学报, 2012, 41(3): 0-416. |
[12] | 邢帅 徐青 刘军 李建胜. 多源卫星遥感影像的光束法区域网平差[J]. 测绘学报, 2009, 38(2): 0-174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||