测绘学报 ›› 2021, Vol. 50 ›› Issue (3): 416-425.doi: 10.11947/j.AGCS.2021.20200036

• 摄影测量学与遥感 • 上一篇    下一篇

高光谱影像子空间分析孤立森林异常目标探测方法

黄远程, 薛园园, 李朋飞   

  1. 西安科技大学测绘科学与技术学院, 西安 710054
  • 收稿日期:2020-02-03 修回日期:2021-01-23 发布日期:2021-03-31
  • 通讯作者: 薛园园 E-mail:xueyuan815@foxmail.com
  • 作者简介:黄远程(1983-),男,博士,讲师,研究方向为高光谱图像处理与模式识别。E-mail:yuanchenghuang@xust.edu.cn
  • 基金资助:
    国家自然科学基金(41977059);痕迹科学与技术公安部重点实验室开放基金(2020FMKFKT07)

Subspace analysis isolation forest for hyperspectral anomaly detection

HUANG Yuancheng, XUE Yuanyuan, LI Pengfei   

  1. College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
  • Received:2020-02-03 Revised:2021-01-23 Published:2021-03-31
  • Supported by:
    The National Natural Science Foundation of China (No. 41977059);Ministry of Public Security Key Laboratory of Forensic Marks Open Foundation (No. 2020FMKFKT07)

摘要: 复杂的背景信息和高维冗余波段是影响高光谱遥感影像异常目标检测精度的重要因素。本文针对高光谱影像异常目标提取提出了一种子空间分析孤立森林探测方法。该方法不对背景做高斯分布假设,通过正交子空间分析增强输入特征影像中潜在异常目标与背景之间的对比度,通过主成分分析法降维来降低孤立森林算法带来的不确定性,运用了全局和局部结合的思想实现异常目标检测。在停机坪、海滩、港口和草地4个不同场景的高光谱影像上的试验结果表明,本方法的异常目标提取精度较经典方法取得了更好的结果。该方法不仅有效地处理了高光谱遥感影像的复杂背景和高维问题,还有效地利用了空间信息。

关键词: 高光谱影像, 异常目标检测, 孤立森林, 正交子空间, 主成分分析

Abstract: Since the anomalies are usually “rare and different” in the hyperspectral image scene, they tend to be more easily isolated from the background pixels by appropriate splitting criterion. In view of this, we propose a hyperspectral anomaly detection method based isolation forest (iForest) with subspace analysis. Firstly, orthogonal subspace background suppression and dimension reduction techniques were used to improve the reliability of the isolation tree-splitting criterion. Secondly, the iForest-based detection may produce a number of false alarms since the forest is constructed using the randomly selected pixels in the whole scene. In order to solve this problem, the initial anomaly detection map was refined by local iForest processing. Compared with original iForest method, our approach can not only handle high dimensional problem, but also make full use of the local information. The experiments demonstrate the AUC score have been significantly improved in our approach.

Key words: hyperspectral imagery, anomaly detection, isolation forest, orthogonal subspace, principal component analysis

中图分类号: