测绘学报 ›› 2015, Vol. 44 ›› Issue (11): 1227-1234.doi: 10.11947/j.AGCS.2015.20140600

• 摄影测量学与遥感 • 上一篇    下一篇

高光谱影像信息向量机分类

谭熊, 余旭初, 秦志远, 张鹏强, 魏祥坡   

  1. 信息工程大学地理空间信息学院, 河南 郑州 450001
  • 收稿日期:2014-11-18 修回日期:2015-03-10 出版日期:2015-11-20 发布日期:2015-11-25
  • 作者简介:谭熊(1986-),男,讲师,研究方向为高光谱影像处理与分析、摄影测量与遥感。E-mail:kjadetx@163.com
  • 基金资助:
    国家自然科学基金(41201477,41401534);地理信息工程国家重点实验室开放基金(SKLGIE2013-M-3-1);测绘地理信息公益性行业科研专项(201412007)

Informative Vector Machine Classification for Hyperspectral Imagery

TAN Xiong, YU Xuchu, QIN Zhiyuan, ZHANG Pengqiang, WEI Xiangpo   

  1. Institute of Surveying and Mapping, Information Engineering University, Zhengzhou 450001, ChinaAbstract
  • Received:2014-11-18 Revised:2015-03-10 Online:2015-11-20 Published:2015-11-25
  • Supported by:
    The National Natural Science Foundation of China(Youth Science Foundation)(Nos. 41201477;41401534), The Open Fund of State Key Laboratory of Geographic Information Engineering(No. SKLGIE2013-M-3-1) The Scientific Research Foundation for Public Welfare Industry of Surveying and Mapping and Geographic Information(No. 201412007)

摘要: 信息向量机是一种基于贝叶斯理论的稀疏高斯过程方法,其模型训练速度快、内存耗费小、稀疏性强,具有良好的预测性能。本文从高斯过程回归模型出发,提出了一种基于信息向量机的高光谱影像分类方法,针对高斯过程分类中的非高斯噪声模型,采用假定概率滤波算法将分类问题转化为回归问题,通过最大化边缘似然函数进行模型训练,选择活动子集中的信息向量数量达到了稀疏的目的。通过ROSIS影像试验,表明了基于信息向量机的高光谱影像分类方法的优势。

关键词: 高光谱影像, 信息向量机, 分类

Abstract: Informative vector machine is a method of sparse Gaussian process based on Bayesian theory, which has high speed in model training, small consuming in memory, strong effective in sparseness and good forecasting performance. In this paper, the Gaussian process regression model is introduced firstly, and then a hyperspectral imagery classification method based on informative vector machine is brought forward. Secondly, to solve the problem of non-Gaussian noise model in the Gaussian process classification, the classification problem is transformed into a regression problem by using the assume density filtering algorithm, after which model is trained by maximizing the marginal likelihood function. Finally, the number of informative vector is chosen in active subset to achieve the purpose of sparse. According to the experimental results of ROSIS images, the advantages of hyperspectral imagery classification method based on informative vector machine are validated.

Key words: hyperspectral imagery, informative vector machine, classification

中图分类号: