测绘学报 ›› 2018, Vol. 47 ›› Issue (2): 275-280.doi: 10.11947/j.AGCS.2018.20170494

• • 上一篇    下一篇

引入曲面变分实现点云法矢一致性调整

何华1, 李宗春1, 闫荣鑫2, 杨再华2, 阮焕立1, 付永健1   

  1. 1. 信息工程大学地理空间信息学院, 河南 郑州 450001;
    2. 北京卫星环境工程研究所, 北京 100094
  • 收稿日期:2017-09-01 修回日期:2017-11-27 出版日期:2018-02-20 发布日期:2018-03-02
  • 通讯作者: 李宗春 E-mail:13838092876@139.com
  • 作者简介:何华(1992-),男,硕士生,研究方向为点云数据曲面重建与精密工程测量。E-mail:805648221@qq.com
  • 基金资助:
    航天器高精度测量联合实验室基金(201501)

On the Consistent Normal Vector Adjustment of Point Cloud Using Surface Variation

HE Hua1, LI Zongchun1, YAN Rongxin2, YANG Zaihua2, RUAN Huanli1, FU Yongjian1   

  1. 1. Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China;
    2. Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China
  • Received:2017-09-01 Revised:2017-11-27 Online:2018-02-20 Published:2018-03-02
  • Supported by:
    The Spacecraft High-precision Measuring Association Laboratory Foundation (No. 201501)

摘要: 针对现有法矢一致性调整算法效率不高、准确度低的问题,引入曲面变分改善该类算法的性能。首先通过主成分分析法估算点云的法矢和曲面变分,然后用曲面变分区分平缓点与非平缓点。调整法矢时,采用缩小待调整法矢的搜索范围到k-邻域内和增加每次搜索时法矢传播个数的策略来提高效率;采用约束法矢传播方向的方法保证准确性。试验结果表明,该算法在平缓区域、尖锐特征区域和高曲率区域均能得到正确的法矢调整结果,且算法效率较已有方法更高。

关键词: 法矢一致性调整, 曲面变分, 主成分分析, k-邻域, 点云

Abstract: In order to improve the efficiency and accuracy of existing normal vector adjustment algorithms,a consistent normal vector adjustment algorithm using surface variation is proposed.Firstly,the normal vector and surface variation of point cloud are calculated using principal component analysis.Then,the points on flat or uneven area are distinguished based on surface variation.In the process of adjusting normal vector,the search scope is narrowed to k-nearest neighbors and the number of adjusted normal vector is increased to improve efficiency.The propagating direction of normal vector is restrained to insure accuracy.The experiments show that the proposed algorithm can always receive accurate result on flat region,feature condition and high curvature area,meanwhile,the proposed algorithm is more efficient than the existing algorithms.

Key words: consistent normal vector adjustment, surface variation, principal component analysis, k-nearest neighbors, point cloud

中图分类号: