[1] 闫利, 戴集成, 谭骏祥, 等. SLAM激光点云整体精配准位姿图技术[J]. 测绘学报, 2019, 48(3):313-321.DOI:10.11947/j.AGCS.2019.20170716. YAN Li, DAI Jicheng, TAN Junxiang, et al. Global fine registration of point cloud in LiDAR SLAM based on pose graph[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(3):313-321. DOI:10.11947/j.AGCS.2019.20170716. [2] YAN Li, DAI Jicheng, TAN Junxiang, et al. Global fine registration of point cloud in LiDAR SLAM based on pose graph[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2):26-35. [3] BESL P J, MCKAY N D. A method for registration of 3D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2):239-256. [4] 闫利, 谭骏祥, 刘华, 等. 融合遗传算法和ICP的地面与车载激光点云配准[J]. 测绘学报, 2018, 47(4):528-536. DOI:10.11947/j.AGCS.2018.20170235. YAN Li, TAN Junxiang, LIU Hua, et al. Registration of TLS and MLS point cloud combining genetic algorithm with ICP[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(4):528-536.DOI:10.11947/j.AGCS.2018.20170235. [5] 孙文潇, 王健, 梁周雁, 等. 法线特征约束的激光点云精确配准[J]. 武汉大学学报(信息科学版), 2020, 45(7):988-995. SUN Wenxiao, WANG Jian, LIANG Zhouyan, et al. Accurate registration of laser point cloud based on normal feature constraint[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7):988-995. [6] RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration[C]//Proceedings of 2009 IEEE International Conference on Robotics and Automation. Kobe:IEEE, 2009:3212-3217. [7] CHOY C, PARK J, KOLTUN V. Fully Convolutional Geometric Features[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision.Seoul:IEEE,2019:8958-8966. [8] DENG Haowen, BIRDAL T, ILIC S. PPFNet:global context aware local features for robust 3D point matching[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake:IEEE, 2018:195-205. [9] JOHNSON A E, HEBERT M. Using spin images for efficient object recognition in cluttered 3D scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(5):433-449. [10] SALTI S, TOMBARI F, STEFANO L D. SHOT:Unique signatures of histograms for surface and texture description[J]. Computer Vision and Image Understanding, 2014, 125:251-264. [11] DONG Zhen,LIANG Fuxun,YANG Bisheng, et al. Registration of large-scale terrestrial laser scanner point clouds:a review and benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163:327-342. [12] LOWE D G. Distinctive image features from scale invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110. [13] RUBNER Y, TOMASI C, GUIBAS L J. The earth mover's distance as a metric for image retrieval[J]. International Journal of Computer Vision, 2000, 40(2):99-121. [14] BRADSKI G, The OpenCV Library. Dr. Dobb's Journal of Software Tools[DB/OL]. http://opencv.arg/.2000. [15] ZHOU Qianyi, PARK J, KOLTUN V. Fast global registration[M]//Proceedings of 2016 Computer Vision-ECCV European Conference, Amsterdam, The Netherlands. Springer International Publishing, 2016:766-782. [16] LEE J, KIM S, CHO M, et al. Deep hough voting for robust global registration[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal:IEEE, 2021:15974-15983. [17] LEORDEANU M, HEBERT M. A spectral technique for correspondence problems using pairwise constraints[C]//Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing:IEEE, 2005:1482-1489. [18] CHO M, LEE J, LEE K M. Reweighted random walks for graph matching[C]//Proceedings of the 11th European conference on Computer vision:Part V. New York:ACM Press, 2010:492-505. [19] CHO M, SUN Jian, DUCHENNE O, et al. Finding matches in a haystack:a max-pooling strategy for graph matching in the presence of outliers[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition.Columbus, OH, USA. IEEE, 2014:2091-2098. [20] 李彩林, 王志勇, 俞路路, 等. 最邻近曲面约束的近景光学影像与地面激光点云几何配准[J]. 测绘学报, 2020, 49(8):1014-1022. DOI:10.11947/j.AGCS.2020.20190146. LI Cailin, WANG Zhiyong, YU Lulu, et al. Geometric registration of close-range optical image and terrestrial laser point cloud constrained by nearest surface[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(8):1014-1022. DOI:10.11947/j.AGCS.2020.20190146. [21] FISCHLER M A, ROBERT C B. Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6):381-395. [22] PAIS G D, RAMALINGAM S, GOVINDU V M, et al. 3DRegNet:a deep neural network for 3D point registration[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle, WA:IEEE,2020:7193-7203. [23] BAI Xuyang, LUO Zixin, ZHOU Lei, et al. PointDSC:robust point cloud registration using deep spatial consistency[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville:IEEE, 2021:15859-15869. [24] CHOY C, DONG Wei, KOLTUN V. Deep global registration[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle:IEEE, 2020:2511-2520. [25] ZHONG Yu. Intrinsic shape signatures:a shape descriptor for 3D object recognition[C]//Proceedings of 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops. Kyoto:IEEE, 2010:689-696. [26] GUO Yulan, BENNAMOUN M, SOHEL F, et al. A comprehensive performance evaluation of 3D local feature descriptors[J]. International Journal of Computer Vision, 2016, 116(1):66-89. [27] LI Jiayuan. GESAC:robust graph enhanced sample consensus for point cloud registration[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167:363-374. [28] MUNKRES J. Algorithms for the assignment and transportation problems[J]. Journal of the Society for Industrial and Applied Mathematics, 1957, 5(1):32-38. [29] SORKINE O, RABINOVICH M. Least-squares rigid motion using SVD[J]. Computing, 2017, 1(1):1-5. [30] ZENG A, SONG S, NIEßNER M, et al. 3DMatch:learning the matching of local 3D geometry in range scans[C]//Proceedings of 2017 Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE,2017:08182. [31] ZHOU Q Y, PARK J, KOLTUN V. Open3D:A modern library for 3D data processing[J/OL].[2018-01-30]. https://arXiv.org/abs/1801.09847. |