测绘学报 ›› 2023, Vol. 52 ›› Issue (5): 798-807.doi: 10.11947/j.AGCS.2023.20220163

• 摄影测量学与遥感 • 上一篇    下一篇

高分遥感影像双通道并行混合卷积分类方法

顾小虎1, 李正军2, 缪健豪1, 李星华1,3, 沈焕锋4   

  1. 1. 武汉大学遥感信息工程学院, 湖北 武汉 430079;
    2. 中交第二公路勘察设计研究院有限公司, 湖北 武汉 430056;
    3. 自然资源部城市国土资源监测与仿真重点实验室, 广东 深圳 518000;
    4. 武汉大学资源与环境科学学院, 湖北 武汉 430079
  • 收稿日期:2022-03-02 修回日期:2022-10-12 发布日期:2023-05-27
  • 通讯作者: 李星华 E-mail:lixinghua5540@whu.edu.cn
  • 作者简介:顾小虎(1999-),男,硕士,研究方向为高分遥感影像分类。E-mail:guxiaohu@whu.edu.cn
  • 基金资助:
    国家自然科学基金(42171302);国家重点研发计划(2019YFB2102904);自然资源部城市国土资源监测与仿真重点实验室开放基金(KF-2021-06-003)

Dual-channel parallel hybrid convolutional neural networks based classification method for high-resolution remote sensing image

GU Xiaohu1, LI Zhengjun2, MIAO Jianhao1, LI Xinghua1,3, SHEN Huanfeng4   

  1. 1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China;
    2. CCCC Second Highway Consultants Co., Ltd., Wuhan 430056, China;
    3. Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen 518000, China;
    4. School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
  • Received:2022-03-02 Revised:2022-10-12 Published:2023-05-27
  • Supported by:
    The National Natural Science Foundation of China (No. 42171302);The National Key Research and Development Program of China (No. 2019YFB2102904);The Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources (No. KF-2021-06-003)

摘要: 高空间分辨率遥感影像拥有丰富的空间细节信息和多光谱信息。研究表明,二维卷积神经网络适于提取空间信息,而三维卷积神经网络更适于提取光谱信息。为了更好地利用空谱信息,本文提出一种双通道并行混合卷积神经网络(DPHCNN)方法,充分联合二维与三维卷积神经网络在空谱信息提取上的优势,同时引入混合注意力机制、多尺度卷积增强空间细节特征的提取能力,实现高分影像的精准分类。试验中利用高分二号影像数据集进行验证,与当前先进的深度学习分类方法相比,本文提出的DPHCNN方法在保证分类精度高、分类效率较好的同时,能在多时相影像分类中保持最高的稳健性,在综合评价上更具优势。

关键词: 混合卷积神经网络, 高分遥感影像, 多尺度卷积, 混合注意力机制, 影像分类

Abstract: High spatial resolution remote sensing images have rich spatial detail information and multi-spectral information. Previous studies have shown that two-dimensional convolutional neural networks (CNN) are suitable for extracting spatial information, while three-dimensional CNN are more suitable for extracting spectral information. In order to make better use of spatio-spectral information, this paper innovatively proposes a dual-channel parallel hybrid convolutional neural networks (DPHCNN), which fully combines the advantages of two-dimensional and three-dimensional CNN in spatio-spectral information extraction. Simultaneously, the hybrid attention mechanism and multi-scale convolution are introduced to enhance the extraction ability of spatial detail features to achieve accurate classification of high-resolution images. In the experiment, the GF-2 image dataset was used for verification. Compared with state-of-the-art deep learning classification methods, the DPHCNN method proposed in this paper not only has the highest classification accuracy and better classification efficiency but maintains the highest robustness in multi-temporal images classification, which has more advantages in comprehensive evaluation.

Key words: hybrid convolutional neural network, high-resolution remote sensing images, multi-scale convolution, hybrid attention mechanism, image classification

中图分类号: