[1] ZHANG Liangpei, ZHANG Lefei, DU Bo. Deep learning for remote sensing data:a technical tutorial on the state of the art[J]. IEEE Geoscience and Remote Sensing Magazine, 2016, 4(2):22-40. [2] 张号逵, 李映, 姜晔楠. 深度学习在高光谱图像分类领域的研究现状与展望[J]. 自动化学报, 2018, 44(6):961-977. ZHANG Haokui, LI Ying, JIANG Yenan. Deep learning for hyperspectral imagery classification:the state of the art and prospects[J]. Acta Automatica Sinica, 2018, 44(6):961-977. [3] PAOLETTI M E, HAUT J M, PLAZA J, et al. Deep learning classifiers for hyperspectral imaging:a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 158(8):279-317. [4] 刘冰, 余旭初, 张鹏强, 等. 联合空-谱信息的高光谱影像深度三维卷积网络分类[J]. 测绘学报, 2019, 48(1):53-63. DOI:10.11947/j.AGCS.2019.20170578. LIU Bing, YU Xuchu, ZHANG Pengqiang, et al. Deep 3D convolutional network combined with spatial-spectral features for hyperspectral image classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1):53-63. DOI:10.11947/j.AGCS.2019.20170578. [5] 马晓瑞.基于深度学习的高光谱影像分类方法研究[D]. 大连:大连理工大学,2017. MA Xiaorui. Research on hyperspectral image classification method based on deep learning[D].Dalian:Dalian University of Technology,2017. [6] YUE Jun, ZHAO Wenzhi, MAO Shanjun, et al. Spectral-spatial classification of hyperspectral images using deep convolutional neural networks[J]. Remote Sensing Letters, 2015, 6(6):468-477. [7] CHEN Yushi, JIANG Hanlu, LI Chunyang, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10):6232-6251. [8] ZHOU Feng, HANG Renlong, LI Juan,et al. Spectral-spatial correlation exploration for hyperspectral image classification via self-mutual attention network[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. [9] ZHI Lu, YU Xuchu, LIU Bing, et al. A dense convolutional neural network for hyperspectral image classification[J]. Remote Sensing Letters, 2019, 10(1):59-66. [10] LIU Bing, YU Xuchu, ZHANG Pengqiang, et al. Supervised deep feature extraction for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4):1909-1921. [11] ROY S K, HAUT J M, PAOLETTI M E, et al. Generative adversarial minority oversampling for spectral-spatial hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-15. [12] 高奎亮, 余旭初, 张鹏强, 等. 利用胶囊网络实现高光谱影像空谱联合分类[J]. 武汉大学学报(信息科学版), 2022, 47(3):428-437. GAO Kuiliang, YU Xuchu, ZHANG Pengqiang, et al. Hyperspectral image spatial-spectral classification using capsule network based method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3):428-437. [13] PAOLETTI M E, MORENO-ÁLVAREZ S, HAUT J M. Multiple attention-guided capsule networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-20. [14] 高奎亮, 余旭初, 宋治杭, 等. 联合空谱信息的高光谱影像深度胶囊网络分类[J]. 遥感学报, 2021, 25(6):1257-1269. GAO Kuiliang, YU Xuchu, SONG Zhihang, et al. Deep capsule network combined with spatial-spectral information for hyperspectral image classification[J]. Journal of Remote Sensing, 2021, 25(6):1257-1269. [15] YANG Bin, HU Shunshi, GUO Qiandong, et al. Multisource domain transfer learning based on spectral projections for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15:3730-3739. [16] 王立国, 马骏宇, 李阳. 联合多种空间信息的高光谱半监督分类方法[J]. 哈尔滨工程大学学报, 2021, 42(2):280-285. WANG Liguo, MA Junyu, LI Yang. Hyperspectral semi-supervised classification algorithm considering multiple spatial information[J]. Journal of Harbin Engineering University, 2021, 42(2):280-285. [17] 田彦平, 陶超, 邹峥嵘, 等. 主动学习与图的半监督相结合的高光谱影像分类[J]. 测绘学报, 2015, 44(8):919-926. TIAN Yanping, TAO Chao, ZOU Zhengrong, et al. Semi-supervised graph-based hyperspectral image classification with active learning[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(8):919-926. [18] 左溪冰, 刘冰, 余旭初, 等. 高光谱影像小样本分类的图卷积网络方法[J]. 测绘学报, 2021, 50(10):1358-1369. DOI:10.11947/j.AGCS.2021.20200155. ZUO Xibing, LIU Bing, YU Xuchu, et al. Graph convolutional network method for small sample classification of hyperspectral images[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10):1358-1369. DOI:10.11947/j.AGCS.2021.20200155. [19] MEI Shaohui, JI Jingyu, GENG Yunhao, et al. Unsupervised spatial-spectral feature learning by 3D convolutional autoencoder for hyperspectral classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9):6808-6820. [20] YU Chunyan, LIU Caiyu, SONG Meiping, et al. Unsupervised domain adaptation with content-wise alignment for hyperspectral imagery classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. [21] GUAN Peiyan, LAM E Y. Cross-domain contrastive learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-13. [22] GAO Kuiliang, GUO Wenyue, YU Xuchu, et al. Deep induction network for small samples classification of hyperspectral images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:3462-3477. [23] 刘冰, 左溪冰, 谭熊, 等. 高光谱影像分类的深度少样例学习方法[J]. 测绘学报, 2020, 49(10):1331-1342. DOI:10.11947/j.AGCS.2020.20190486. LIU Bing, ZUO Xibing, TAN Xiong, et al. A Deep few-shot learning algorithm for hyperspectral image classification[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10):1331-1342. DOI:10.11947/j.AGCS.2020.20190486. [24] FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of the 34th International Conference on Machine Learning.Sydney:ACM Press, 2017:1126-1135. [25] LIU Bing, YU Xuchu, YU Anzhu, et al. Deep few-shot learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4):2290-2304. [26] GAO Kuiliang, LIU Bing, YU Xuchu, et al. Deep relation network for hyperspectral image few-shot classification[J]. Remote Sensing, 2020, 12(6):923. [27] SUNG F, YANG Yongxin, ZHANG Li, et al. Learning to compare:relation network for few-shot learning[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE, 2018:1199-1208. [28] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas:IEEE, 2016:770-778. [29] ZHONG Yanfei, HU Xin, LUO Chang, et al. WHU-Hi:UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precisecropidentification based on deep convolutional neural network with CRF[J]. Remote Sensing of Environment, 2020, 250:112012. [30] LIU Bing, GAO Kuiliang, YU Anzhu, et al. Semisupervised graph convolutional network for hyperspectral image classification[J]. Journal of Applied Remote Sensing, 2020, 14(2):026516. |