
测绘学报 ›› 2023, Vol. 52 ›› Issue (11): 1953-1961.doi: 10.11947/j.AGCS.2023.20220275
刘海兵, 曲英杰, 颜青松, 邓非
收稿日期:2022-04-06
修回日期:2022-10-01
发布日期:2023-12-15
通讯作者:
邓非
E-mail:fdeng@sgg.whu.edu.cn
作者简介:刘海兵(1998-),男,博士生,研究方向为三维重建。E-mail:liuhb_whu@whu.edu.cn
基金资助:LIU Haibing, QU Yingjie, YAN Qingsong, DENG Fei
Received:2022-04-06
Revised:2022-10-01
Published:2023-12-15
Supported by:摘要: 现有的区域生长算法提取平面基元不准确不规则,忽略了尺度较小的几何结构。本文提出了一种建筑物单体结构化重建的变尺度网格基元提取方法,采用多尺度区域生长算法从网格不同尺度大小的几何结构中提取出对应的平面基元,提升了平面基元提取的准确性和完整性。通过平面基元拓扑优化进一步改善平面基元的拓扑质量,提升多边形表面模型的重建精度;并采用面积优先级策略提高共面平面基元合并效率。试验结果表明,本文方法能够更准确地进行平面基元的提取,保留了建筑物较小尺度的几何结构,生成了更简洁紧凑、结构化的建筑物多边形表面模型。
中图分类号:
刘海兵, 曲英杰, 颜青松, 邓非. 建筑物单体结构化重建的变尺度网格基元提取法[J]. 测绘学报, 2023, 52(11): 1953-1961.
LIU Haibing, QU Yingjie, YAN Qingsong, DENG Fei. The method of variable scale mesh primitive extraction for monomeric and structural reconstruction of buildings[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(11): 1953-1961.
| [1] HERBERT G, CHEN Xuwei. A comparison of usefulness of 2D and 3D representations of urban planning[J]. Cartography and Geographic Information Science, 2015, 42(1):22-32. [2] YAO Zhihang, NAGEL C, KUNDE F, et al. 3DcityDB:a 3D geodatabase solution for the management, analysis, and visualization of semantic 3D city models based on CityGML[J]. Open Geospatial Data, Software and Standards, 2018, 3(1):1-26. [3] STOTER J, PETERS R, COMMANDEUR T, et al. Automated reconstruction of 3D input data for noise simulation[J]. Computers, Environment and Urban Systems, 2020, 80:101424. [4] CAPPELLE C, EL NAJJAR M E, CHARPILLET F, et al. Virtual 3D city model for navigation in urban areas[J]. Journal of Intelligent and Robotic Systems, 2012, 66(3):377-399. [5] KARGAS A, LOUMOS G, VAROUTAS D. Using different ways of 3D reconstruction of historical cities for gaming purposes:the case study of Nafplio[J]. Heritage, 2019, 2(3):1799-1811. [6] LI Minglei, WONKA P, NAN Liangliang. Manhattan-world urban reconstruction from point clouds[C]//Proceedings of 2016 European Conference on Computer Vision. Cham:Springer, 2016:54-69. [7] SCHNABEL R, WAHL R, KLEIN R. Efficient RANSAC for point-cloud shape detection[J]. Computer Graphics Forum, 2007, 26(2):214-226. [8] NAN L L, WONKA P. PolyFit:polygonal surface reconstruction from point clouds[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice:IEEE, 2017:2372-2380. [9] CHEN Z, LEDOUX H, KHADEMI S, et al. Reconstructing compact building models from point clouds using deep implicit fields[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 194:58-73. [10] ERLER P, GUERRERO P, OHRHALLINGER S, et al. Points2Surf:learning implicit surfaces from point clouds[EB/OL].[2022-06-28]. https://arxiv.org/pdf/2007.10453.pdf. [11] XIE Linfu, HU Han, ZHU Qing, et al. Combined rule-based and hypothesis-based method for building model reconstruction from photogrammetric point clouds[J]. Remote Sensing, 2021, 13(6):1107. [12] FANG H, LAFARGE F. Connect-and-slice:an hybrid approach for reconstructing 3D objects[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle:IEEE, 2020:13487-13495. [13] 崔扬. 移动LiDAR点云室内三维结构化重建方法和关键技术研究[J]. 测绘学报, 2021, 50(7):990. DOI:10.11947/j.AGCS.2021.20200592. CUI Yang. Research on methodology and the key technology of indoor 3D structured reconstruction from mobile LiDAR point clouds[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7):990. DOI:10.11947/j.AGCS.2021.20200592. [14] ZHU Lingjie, SHEN Shuhan, HU Lihua, et al. Variational building modeling from urban MVS meshes[C]//Proceedings of 2017 International Conference on 3D Vision. Qingdao:IEEE, 2018:318-326. [15] COHEN-STEINER D, ALLIEZ P, DESBRUN M. Variational shape approximation[J]. ACM Transactions on Graphics, 23(3):905-914. [16] CityGML. CityGML[EB/OL].[2023-06-28].http://www.opengeospatial.org/standards/citygml. [17] ZHU Lingjie, SHEN Shuhan, GAO Xiang, et al. Large scale urban scene modeling from MVS meshes[C]//Proceedings of the 15th European Conference. Munich:Springer, 2018:640-655. [18] BOYKOV Y, KOLMOGOROV V. An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9):1124-1137. [19] BOYKOV Y, VEKSLER O, ZABIH R. Fast approximate energy minimization via graph cuts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(11):1222-1239. [20] ZHU Lingjie, SHEN Shuhan, GAO Xiang, et al. Urban scene vectorized modeling based on contour deformation[J]. ISPRS International Journal of Geo-Information, 2020, 9(3):162. [21] BOUZAS V, LEDOUX H, NAN L. Structure-aware building mesh polygonization[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167:432-442. [22] YAN Li, LI Yao, XIE Hong. Urban building mesh polygonization based on 1-ring patch and topology optimization[J]. Remote Sensing, 2021, 13(23):4777. [23] GATZKE T D, GRIMM C M. Estimating curvature on triangular meshes[J]. International Journal of Shape Modeling, 2006, 12(1):1-28. [24] PAULY M, GROSS M, KOBBELT L P. Efficient simplification of point-sampled surfaces[C]//Proceedings of 2002 IEEE Visualization. Boston:IEEE, 2022:163-170. [25] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1):62-66. [26] 邓非, 颜青松, 肖腾. 多视密集匹配并行传播GPU-PatchMatch算法[J]. 测绘学报, 2020, 49(2):181-190. DOI:10.11947/j.AGCS.2020.20180459. DENG Fei, YAN Qingsong, XIAO Teng. A GPU-PatchMatch multi-view dense matching algorithm based on parallel propagation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(2):181-190. DOI:10.11947/j.AGCS.2020.20180459. [27] GARLAND M, HECKBERT P S. Surface simplification using quadric error metrics[C]//Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques.New York:ACM Press, 1997:209-216. [28] GUTHE M, BORODIN P, KLEIN R. Fast and accurate Hausdorff distance calculation between meshes[EB/OL].[2022-06-28].http://wscg.zcu.cz/wscg2005/Papers_2005/Full/F61-full.pdf. |
| [1] | 曹云刚, 杨鹏, 龚江波, 朱高, 沈星宇. 空间关系增强与异构特征融合相结合的道路信息提取方法[J]. 测绘学报, 2025, 54(12): 2219-2232. |
| [2] | 张津, 冯凡, 戴晨光, 张振超, 于英, 刘冰. 基于CNN-ViT混合特征优化的小样本高光谱图像分类[J]. 测绘学报, 2025, 54(12): 2233-2246. |
| [3] | 侯昭阳, 闫浩文, 张黎明, 马荣娟, 屈睿涛. 基于耦合神经P系统与区块链的遥感影像零水印版权保护方法[J]. 测绘学报, 2025, 54(12): 2247-2261. |
| [4] | 熊强. 基于空间结构特征的多模态遥感图像匹配方法研究[J]. 测绘学报, 2025, 54(12): 2288-2288. |
| [5] | 冯雨宁. 青藏高原多级气候分区研究[J]. 测绘学报, 2025, 54(12): 2293-2293. |
| [6] | 童小华, 黄荣, 曹佳瑞, 刘宸, 王蓉, 徐聿升, 叶真, 金雁敏, 刘世杰, 柳思聪, 冯永玖, 谢欢. 月球与近地行星三维形貌重建的智能方法综述:研究进展与未来挑战[J]. 测绘学报, 2025, 54(11): 1917-1933. |
| [7] | 武昊, 侯东阳, 张俊, 张平, 刘玉轩, 杜磊, 康路, 程滔, 陈军. 动态服务计算支持的自然资源遥感监测监管平台关键技术研究[J]. 测绘学报, 2025, 54(11): 1992-2008. |
| [8] | 龚希, 陈占龙, 郑恒强, 胡胜, 张洪艳. 融合迁移特征空间和语义信息的遥感影像场景分类方法[J]. 测绘学报, 2025, 54(11): 2009-2025. |
| [9] | 衣雪峰. 点云与影像融合的隧洞岩体结构信息自动提取方法研究[J]. 测绘学报, 2025, 54(11): 2098-2098. |
| [10] | 马开森. 地面激光雷达林分点云单木分离及参数提取研究[J]. 测绘学报, 2025, 54(11): 2100-2100. |
| [11] | 师悦龄. 基于SAR干涉和偏移量追踪估计的高山冰川冰湖动态演变监测及其关联特征分析[J]. 测绘学报, 2025, 54(11): 2103-2103. |
| [12] | 李康宁. 全球城市热岛遥感研究:时空特征、变化模式及驱动分析[J]. 测绘学报, 2025, 54(11): 2105-2105. |
| [13] | 黄鑫, 叶健, 刘骋冰, 曾秋雨, 郭万新, 郭志凯. 一种兼具精度与可解释性的Stacking-SHAP滑坡易发性预测集成方法[J]. 测绘学报, 2025, 54(10): 1826-1840. |
| [14] | 熊新, 靳国旺, 崔瑞兵, 李烁, 杨鹤. 利用秩自相似特征的光学和SAR图像快速匹配方法[J]. 测绘学报, 2025, 54(10): 1852-1862. |
| [15] | 张志力, 姜慧伟, 胡翔云. 面向极简交互的遥感地物精确批量提取框架[J]. 测绘学报, 2025, 54(10): 1863-1876. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||