测绘学报 ›› 2025, Vol. 54 ›› Issue (12): 2219-2232.doi: 10.11947/j.AGCS.2025.20250250

• 摄影测量学与遥感 • 上一篇    下一篇

空间关系增强与异构特征融合相结合的道路信息提取方法

曹云刚(), 杨鹏, 龚江波, 朱高, 沈星宇   

  1. 西南交通大学地球科学与工程学院,四川 成都 611756
  • 收稿日期:2025-06-18 修回日期:2025-11-26 出版日期:2026-01-15 发布日期:2026-01-15
  • 作者简介:曹云刚(1978—),男,博士,教授,研究方向为资源与环境遥感。 E-mail:yungang@swjtu.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFC3005703);国家自然科学基金(41771451);四川省自然科学基金(2022NSFSC0409)

A road extraction method integrating spatial-relation enhancement and heterogeneous feature fusion

Yungang CAO(), Peng YANG, Jiangbo GONG, Gao ZHU, Xingyu SHEN   

  1. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
  • Received:2025-06-18 Revised:2025-11-26 Online:2026-01-15 Published:2026-01-15
  • About author:CAO Yungang (1978—), male, PhD, professor, majors in remote sensing of resources and environment. E-mail: yungang@swjtu.edu.cn
  • Supported by:
    The National Key Research and Development Program of China(2022YFC3005703);The National Natural Science Foundation of China(41771451);Sichuan Provincial Natural Science Foundation(2022NSFSC0409)

摘要:

针对高原特殊环境下遥感影像中道路材质与背景混淆、结构细长易断裂等问题,本文提出了一种结合空间关系增强器(spatial relationship enhancer,SRE)和连通性约束损失(connectivity loss,Cnt_Loss)的改进道路提取模型SRENet。核心贡献包括:①设计空间关系增强器,通过关键点图卷积显式建模道路拓扑结构,显著提升弯曲与遮挡区域的连通性检测能力;②构建双分支架构并设计异构特征融合模块,实现语义特征与空间细节的互补增强,增强对材质与环境类似的低对比度道路的提取能力;③提出连通性约束损失函数,通过几何驱动优化抑制狭窄断裂区域的误分割。本文方法以双分支深度神经网络为基础,通过异构特征融合模块实现多尺度特征互补,并结合连通性约束损失函数Cnt_Loss对道路几何特征进行优化。研究表明:SRENet在JL1与DGRD数据集上的IoU分别达到0.700 2和0.660 4,较现有模型分别提升了0.011 6和0.025 2;在道路连接性优化方面表现突出,显著减少了在弯曲路段与行道树遮挡区域的断裂数量;提出的Cnt_Loss函数通过几何约束机制,有效解决了弱边界道路的漏检问题。

关键词: 青藏高原, 道路提取, 异构特征融合, 空间关系增强, 图卷积

Abstract:

This study addresses the issues of material confusion and the susceptibility of thin and elongated structures to fragmentation in road extraction from remote sensing images under complex plateau environments. We propose an improved road extraction model, SRENet, which incorporates a spatial relationship enhancer (SRE) and a connectivity loss (Cnt_Loss). The core contributions of this work are as follows: ① The spatial relationship enhancer is designed to explicitly model the topological structure of roads through key point graph convolution, significantly improving the connectivity detection capability in curved and occluded areas. ② A dual-branch heterogeneous architecture was constructed with a specially designed heterogeneous feature fusion module to achieve complementary enhancement between semantic features and spatial details, thereby improving extraction capability for low-contrast roads with material and environmental similarities. ③ A connectivity constraint loss function is proposed to suppress mis-segmentation in narrow and fragmented regions through geometry-driven optimization. Based on a dual-branch deep neural network, this method achieves multi-scale feature complementarity through the heterogeneous feature fusion module and optimizes road geometric features using the Cnt_Loss. The research results demonstrate that SRENet achieves IoU scores of 0.700 2 and 0.660 4 on the JL1 and DGRD datasets, respectively, representing improvements of 0.011 6 and 0.025 2 over existing models. The model also demonstrates outstanding performance in optimizing road connectivity, such as significantly reducing the number of fractures in curved sections and areas occluded by roadside trees. The proposed Cnt_Loss function effectively addresses the problem of missing detections in roads with weak boundaries through geometric constraint mechanisms. This method provides a new solution for road extraction from high-resolution remote sensing images.

Key words: Qinghai-Xizang Plateau, road extraction, heterogeneous feature fusion, spatial relationship enhancement, graph convolution

中图分类号: