| [1] |
FRIZZELLE B G, EVENSON K R, RODRIGUEZ D A, et al. The importance of accurate road data for spatial applications in public health: customizing a road network[J]. International Journal of Health Geographics, 2009, 8(1): 24.
|
| [2] |
YOUSSEF A M, SEFRY S A, PRADHAN B, et al. Analysis on causes of flash flood in Jeddah city (Kingdom of Saudi Arabia) of 2009 and 2011 using multi-sensor remote sensing data and GIS[J]. Geomatics, Natural Hazards and Risk, 2016, 7(3): 1018-1042.
|
| [3] |
XU Yongyang, SHI Zhaolun, XIE Xuejing, et al. Residual channel attention fusion network for road extraction based on remote sensing images and GPS trajectories[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 8358-8369.
|
| [4] |
连仁包, 张振敏, 廖一鹏, 等. 结合测地距离场与曲线平滑的遥感图像道路中心线快速提取[J]. 测绘学报, 2023, 52(8): 1317-1329. DOI: .
doi: 10.11947/j.AGCS.2023.20220002
|
|
LIAN Renbao, ZHANG Zhenmin, LIAO Yipeng, et al. A quick road centreline extraction method from remote sensing images combining with geodesic distance field and curve smoothing[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(8): 1317-1329. DOI: .
doi: 10.11947/j.AGCS.2023.20220002
|
| [5] |
黄福蓉. 用于实时道路场景的语义分割算法CBR-ENet[J]. 中国电子科学研究院学报, 2021, 16(3): 277-284.
|
|
HUANG Furong. Semantic segmentation network CBR-eNet for real-time road scenes[J]. Journal of China Academy of Electronics and Information Technology, 2021, 16(3): 277-284.
|
| [6] |
胡功明, 杨春成, 徐立, 等. 改进U-Net的遥感图像语义分割方法[J]. 测绘学报, 2023, 52(6): 980-989. DOI: .
doi: 10.11947/j.AGCS.2023.20210684
|
|
HU Gongming, YANG Chuncheng, XU Li, et al. Improved U-Net remote sensing image semantic segmentation method[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(6): 980-989. DOI: .
doi: 10.11947/j.AGCS.2023.20210684
|
| [7] |
GAO Lin, SONG Weidong, DAI Jiguang, et al. Road extraction from high-resolution remote sensing imagery using refined deep residual convolutional neural network[J]. Remote Sensing, 2019, 11(5): 552.
|
| [8] |
LU Xiaoyan, ZHONG Yanfei, ZHENG Zhuo, et al. Multi-scale and multi-task deep learning framework for automatic road extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9362-9377.
|
| [9] |
DING Lei, BRUZZONE L. DiResNet: direction-aware residual network for road extraction in VHR remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(12): 10243-10254.
|
| [10] |
REN Yongfeng, YU Yongtao, GUAN Haiyan. DA-CapsUNet: a dual-attention capsule U-Net for road extraction from remote sensing imagery[J]. Remote Sensing, 2020, 12(18): 2866.
|
| [11] |
TAN Yongqiang, GAO Shanghua, LI Xuanyi, et al. VecRoad: point-based iterative graph exploration for road graphs extraction[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 8907-8915.
|
| [12] |
WEI Yao, JI Shunping. Scribble-based weakly supervised deep learning for road surface extraction from remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-12.
|
| [13] |
李卉. 集成LiDAR和遥感影像城市道路提取与三维建模[J]. 测绘学报, 2011, 40(1): 133.
|
|
LI Hui. Road extraction and modeling with LiDAR and RS image in urban area[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(1): 133.
|
| [14] |
ZHOU Gaodian, CHEN Weitao, GUI Qianshan, et al. Split depth-wise separable graph-convolution network for road extraction in complex environments from high-resolution remote-sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 3128033.
|
| [15] |
商建东, 刘艳青, 高需. 多尺度特征提取的道路场景语义分割[J]. 计算机应用与软件, 2021, 38(11): 174-178.
|
|
SHANG Jiandong, LIU Yanqing, GAO Xu. Semantic segmentation of road scene based on multi-scale feature extraction[J]. Computer Applications and Software, 2021, 38(11): 174-178.
|
| [16] |
ZHOU Lichen, ZHANG Chuang, WU Ming. D-LinkNet: LinkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City: IEEE, 2018: 192-1924.
|
| [17] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30: 5998-6008.
|
| [18] |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. [2017-12-05]. https://arxiv.org/abs/1706.05587.
|
| [19] |
ZHANG Yu, YANG Qiang. An overview of multi-task learning[J]. National Science Review, 2018, 5(1): 30-43.
|
| [20] |
LI X, SUN X, MENG Y, et al. Dice loss for data-imbalanced NLP tasks[EB/OL]. [2020-08-29]. https://arxiv.org/abs/1911.02855.
|
| [21] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2999-3007.
|
| [22] |
FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation[C]//Proceedings of 2019 IEEE/CVF conference on computer vision and pattern recognition.[S.l.]: IEEE, 2019: 3146-3154.
|
| [23] |
PAN Huihui, HONG Yuanduo, SUN Weichao, et al. Deep dual-resolution networks for real-time and accurate semantic segmentation of traffic scenes[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(3): 3448-3460.
|
| [24] |
CHEN Ziyi, DENG Liai, LUO Yuhua, et al. Road extraction in remote sensing data: a survey[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102833.
|
| [25] |
NI Hongyin, JIANG Shan. Deep dual-resolution road scene segmentation networks based on decoupled dynamic filter and squeeze-excitation module[J]. Sensors, 2023, 23(16): 7140.
|
| [26] |
CHEN Ziyi, LUO Yuhua, WANG Jing, et al. DPENet: dual-path extraction network based on CNN and transformer for accurate building and road extraction[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 124: 103510.
|
| [27] |
ZHU Qiqi, ZHANG Yanan, WANG Lizeng, et al. A Global Context-aware and Batch-independent Network for road extraction from VHR satellite imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175: 353-365.
|
| [28] |
LIU Pengfei, WANG Qing, YANG Gaochao, et al. Survey of road extraction methods in remote sensing images based on deep learning[J]. PFG-Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2022, 90(2): 135-159.
|
| [29] |
MADHUMITA D, BHARATH H A. Deep learning based approach for road distress mapping using VHR images[C]//Proceedings of 2023 IEEE International Geoscience and Remote Sensing Symposium. Pasadena: IEEE, 2023: 1549-1552.
|
| [30] |
CHEN Xin, SUN Qun, GUO Wenyue, et al. GA-Net: a geometry prior assisted neural network for road extraction[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 114: 103004.
|
| [31] |
李彦胜, 武康, 欧阳松, 等. 地学知识图谱引导的遥感影像语义分割[J]. 遥感学报, 2024, 28(2): 455-469.
|
|
LI Yansheng, WU Kang, OUYANG Song, et al. Geographic knowledge graph-guided remote sensing image semantic segmentation[J]. National Remote Sensing Bulletin, 2024, 28(2): 455-469.
|
| [32] |
李彦胜, 张永军. 耦合知识图谱和深度学习的新一代遥感影像解译范式[J]. 武汉大学学报(信息科学版), 2022, 47(8): 1176-1190.
|
|
LI Yansheng, ZHANG Yongjun. A new paradigm of remote sensing image interpretation by coupling knowledge graph and deep learning[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1176-1190.
|