测绘学报 ›› 2025, Vol. 54 ›› Issue (7): 1254-1264.doi: 10.11947/j.AGCS.2025.20240271

• 摄影测量学与遥感 • 上一篇    下一篇

顾及道路边界与连通性的道路提取方法研究

徐永洋1,2(), 王健3, 吴亮1,2(), 谢忠1   

  1. 1.中国地质大学(武汉)计算机学院,湖北 武汉 430074
    2.智能地学信息处理湖北省重点实验室,湖北 武汉 430074
    3.中国地质大学(武汉)地理与信息工程学院,湖北 武汉 430074
  • 收稿日期:2024-07-03 修回日期:2025-06-15 出版日期:2025-08-18 发布日期:2025-08-18
  • 通讯作者: 吴亮 E-mail:yongyangxu@cug.edu.cn;wuliang@cug.edu.cn
  • 作者简介:徐永洋(1989—),男,副教授,主要研究方向为遥感信息提取、智能化地图制图。E-mail:yongyangxu@cug.edu.cn
  • 基金资助:
    国家自然科学基金(42371454)

Research on road extraction considering road boundaries and connectivity

Yongyang XU1,2(), Jian WANG3, Liang WU1,2(), Zhong XIE1   

  1. 1.School of Computer Science, China University of Geosciences, Wuhan 430074, China
    2.Hubei Key Laboratory of Intelligent Geo-Information Processing, Wuhan 430074, China
    3.School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
  • Received:2024-07-03 Revised:2025-06-15 Online:2025-08-18 Published:2025-08-18
  • Contact: Liang WU E-mail:yongyangxu@cug.edu.cn;wuliang@cug.edu.cn
  • About author:XU Yongyang (1989—), male, associate professor, majors in remote sensing information extraction and intelligent cartography. E-mail: yongyangxu@cug.edu.cn
  • Supported by:
    The National Nature Science Foundation of China(42371454)

摘要:

道路提取是遥感图像理解的重要任务之一。本文针对遥感影像中道路提取任务中的遮挡问题,提出一种特征融合网络——KDLinkNet。该网络通过基于图推理的道路连通性优化模块,改进遮挡场景下道路提取表现;引入道路边界的先验知识,提出了道路边界优化模块,增强网络对边界信息的提取能力。试验结果表明该方法在LRSNY、Massachusetts、DeepGlobe数据集上F1值分别为94.0%、79.8%和86.1%,均表现良好,为遥感图像复杂场景下的道路提取提供了一种有效解决方案。

关键词: 道路提取, 遮挡问题, 边界优化, 先验知识

Abstract:

Road extraction is a crucial task in remote sensing image interpretation. This study addresses the issue of occlusion in road extraction tasks within remote sensing imagery by proposing a novel feature fusion network structure, KDLinkNet. The network incorporates a graph-based inference module, the road connectivity module (RCM), designed to enhance road connectivity and rectify missing details in complex scenes. Additionally, the study introduces an edge optimization (EO) method based on multi-task learning, which incorporates prior knowledge of road boundaries to improve the network's ability to extract boundary information. Experimental results demonstrate that this method achieves F1 scores of 94.0%, 79.8%, and 86.1% on the LRSNY, Massachusetts, and DeepGlobe datasets, respectively, outperforming current state-of-the-art methods. This research provides an effective solution for road extraction in complex remote sensing image scenarios.

Key words: road extraction, shelter, edge optimization, priori knowledge

中图分类号: