测绘学报 ›› 2023, Vol. 52 ›› Issue (2): 329-340.doi: 10.11947/j.AGCS.2023.20210513

• 地图学与地理信息 • 上一篇    下一篇

GNSS高采样率路径增量地图匹配方法

王浩岩1, 刘远刚1, 李少华1, 梁博1, 何宗宜1,2   

  1. 1. 长江大学地球科学学院, 湖北 武汉 430100;
    2. 武汉大学资源与环境科学学院, 湖北 武汉 430079
  • 收稿日期:2021-09-09 修回日期:2022-04-08 发布日期:2023-03-07
  • 通讯作者: 刘远刚 E-mail:liuygis@foxmail.com
  • 作者简介:王浩岩(1997-),男,硕士,研究方向为地理信息智能化处理。E-mail:why971026@163.com
  • 基金资助:
    国家自然科学基金(42172172;41701537);地理信息工程国家重点实验室开放基(SKLGIE2016-Z-4-1;SKLGIE2017-M-4-6)

Matching the high sampled trajectory with road networks based on path increment

WANG Haoyan1, LIU Yuangang1, LI Shaohua1, LIANG Bo1, HE Zongyi1,2   

  1. 1. School of Geosciences, Yangtze University, Wuhan 430100, China;
    2. School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
  • Received:2021-09-09 Revised:2022-04-08 Published:2023-03-07
  • Supported by:
    The National Natural Science Foundation of China (Nos. 42172172;41701537);The Opened-end Fund of State Key Laboratory of Geo-Information Engineering of China (Nos. SKLGIE2016-Z-4-1;SKLGIE2017-M-4-6)

摘要: 针对高采样率GNSS轨迹数据在复杂城市路网中的匹配问题,本文提出一种基于路径增量的匹配方法。该方法分为组合过滤及增量匹配两个部分,首先通过组合过滤进行路网简化,然后以路径为增量进行匹配计算,在路口点处的匹配中采用综合距离因子与弯曲度的相似度评价方案。为验证其有效性,选取多条复杂程度各异的高采样率轨迹数据进行试验,并与曲率积分约束的地图匹配算法和隐马尔科夫模型两种现有匹配方法进行对比。结果表明,本文算法在高采样率匹配试验中的匹配准确率和效率均表现最优,且能够较好地处理各类复杂路段的匹配,能够满足在复杂城市路网中的高采样率轨迹匹配的需求。

关键词: 地图匹配, GNSS轨迹, 高采样率, 复杂路网, 增量

Abstract: Aiming at matching the high sampled GNSS trajectory data with complex urban road networks, a matching method based on path increment is proposed. The method consists of two parts:combined filtering and incremental matching. Firstly, the road network is simplified through combined filtering, and then the matching process is carried out with the road paths as the increments. During the matching process at the intersection point, the similarity evaluation scheme integrating distance factor and curvature is adopted. In order to verify the effectiveness of the method, several high sampled trajectory data with different complexity are selected for experiments. The method is compared with two existing matching methods, including the curvedness feature constrained map matching method and hidden Markov model (HMM). The results show that the proposed method not only performs better in accuracy and efficiency, but also can suppress the occurrence of matching errors in various complex sections.

Key words: map matching, GNSS trajectory, high sampling frequency, complex road network, increment

中图分类号: