[1] |
VAN BRUMMELEN J, O'BRIEN M, GRUYER D, et al. Autonomous vehicle perception: the technology of today and tomorrow[J]. Transportation Research Part C: Emerging Technologies, 2018, 89: 384-406.
|
[2] |
LIU J, ZHAN J, GUO C, et al. Data logic structure and key technologies on intelligent high-precision map[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3): 1-17. DOI:.
doi: 10.11947/j.JGGS.2020.0301
|
[3] |
姚连璧, 秦长才, 张邵华, 等. 车载激光点云的道路标线提取及语义关联[J]. 测绘学报, 2020, 49(4): 480-488. DOI:.
doi: 10.11947/j.AGCS.2020.20190241
|
|
YAO Lianbi, QIN Changcai, ZHANG Shaohua, et al. Road marking extraction and semantic correlation based on vehicle-borne laser point cloud[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4): 480-488. DOI:.
doi: 10.11947/j.AGCS.2020.20190241
|
[4] |
侯翘楚, 李必军, 蔡毅. 高分辨率遥感影像的车道级高精地图要素提取[J]. 测绘通报, 2021(3): 38-43.
|
|
HOU Qiaochu, LI Bijun, CAI Yi. High-precision lane-level map elements extracting based on high-resolution remote sensing image[J]. Bulletin of Surveying and Mapping, 2021(3): 38-43.
|
[5] |
YU Y, LI J, GUAN H, et al. Learning hierarchical features for automated extraction of road markings from 3D mobile LiDAR point clouds[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(2): 709-726.
|
[6] |
SOILÁN M, RIVEIRO B, MARTÍNEZ-SÁNCHEZ J, et al. Segmentation and classification of road markings using MLS data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 123: 94-103.
|
[7] |
JUNG J, BAE S H. Real-time road lane detection in urban areas using LiDAR data[J]. Electronics, 2018, 7(11): 276.
|
[8] |
MA L, LI Y, LI J, et al. Mobile laser scanned point-clouds for road object detection and extraction: a review[J]. Remote Sensing, 2018, 10(10): 1531.
|
[9] |
史文中, 朱长青, 王昱. 从遥感影像提取道路特征的方法综述与展望[J]. 测绘学报, 2001, 30(3): 257-262.
|
|
SHI Wenzhong, ZHU Changqing, WANG Yu. Road feature extraction from remotely sensed image: review and prospects[J]. Acta Geodaetica et Cartographica Sinica, 2001, 30(3): 257-262.
|
[10] |
SHI W, MIAO Z, DEBAYLE J. An integrated method for urban main-road centerline extraction from optical remotely sensed imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3359-3372.
|
[11] |
ZHANG Y, LI X, ZHANG Q. Road topology refinement via a multi-conditional generative adversarial network[J]. Sensors, 2019, 19(5): 1162.
|
[12] |
ZHOU M, SUI H, CHEN S, et al. BT-RoadNet: a boundary and topologically-aware neural network for road extraction from high-resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168: 288-306.
|
[13] |
郑玲. 自动驾驶高精度地图生成方法研究[D]. 武汉: 武汉大学, 2019.
|
|
ZHENG Ling. Research on high-definition map generation method for autonomous driving[D]. Wuhan: Wuhan University, 2019.
|
[14] |
唐炉亮, 赵紫龙, 杨雪, 等. 大数据环境下道路场景高时空分辨率众包感知方法[J]. 测绘学报, 2022, 51(6): 1070-1090. DOI:.
doi: 10.11947/j.AGCS.2022.20220155
|
|
TANG Luliang, ZHAO Zilong, YANG Xue, et al. Road crowd-sensing with high spatio-temporal resolution in big data era[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 1070-1090. DOI:.
doi: 10.11947/j.AGCS.2022.20220155
|
[15] |
童咏昕, 袁野, 成雨蓉, 等. 时空众包数据管理技术研究综述[J]. 软件学报, 2017, 28(1): 35-58.
|
|
TONG Yongxin, YUAN Ye, CHENG Yurong, et al. Survey on spatio-temporal crowdsourced data management techniques[J]. Journal of Software, 2017, 28(1): 35-58.
|
[16] |
ZHENG T, HUANG Y, LIU Y, et al. CLRNet: cross layer refinement network for lane detection[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2022: 898-907.
|
[17] |
YANG X, TANG L, REN C, et al. Pedestrian network generation based on crowdsourced tracking data[J]. International Journal of Geographical Information Science, 2020, 34(5): 1051-1074.
|
[18] |
UDUWARAGODA E, PERERA A S, DIAS S A D. Generating lane level road data from vehicle trajectories using kernel density estimation[C]//Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems. [S.l.]: IEEE, 2013: 384-391.
|
[19] |
TANG L, YANG X, DONG Z, et al. CLRIC: collecting lane-based road information via crowdsourcing[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(9): 2552-2562.
|
[20] |
YANG X, TANG L, STEWART K, et al. Automatic change detection in lane-level road networks using GPS trajectories[J]. International Journal of Geographical Information Science, 2018, 32(3): 601-621.
|
[21] |
GUO C, KIDONO K, MEGURO J, et al. A low-cost solution for automatic lane-level map generation using conventional in-car sensors[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(8): 2355-2366.
|
[22] |
SHI J, LI G, ZHOU L, et al. Lane-level road network construction based on street-view images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 4744-4754.
|
[23] |
吴一全, 刘莉. 基于视觉的车道线检测方法研究进展[J]. 仪器仪表学报, 2019, 40(12): 92-109.
|
|
WU Yiquan, LIU Li. Research and development of the vision-based lane detection methods[J]. Chinese Journal of Scientific Instrument, 2019, 40(12): 92-109.
|
[24] |
FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.
|
[25] |
ALY M. Real time detection of lane markers in urban streets[C]//Proceedings of 2008 IEEE Intelligent Vehicles Symposium. [S.l.]: IEEE, 2008: 7-12.
|
[26] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 道路交通标志和标线:GB 5768.3—2009[S]. 北京: 中国标准出版社, 2009.
|
|
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China, Road traffic signs and markings: GB 5768.3—2009[S]. Beijing: Standards Press of China, 2009.
|
[27] |
ODENCRANTZ J. Markov chains: gibbs fields, Monte Carlo simulation, and queues[J]. Technometrics, 2000, 42(4): 438.
|
[28] |
ZHOU J, GUO Y, BIAN Y, et al. Lane information extraction for high definition maps using crowdsourced data[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 24(7): 1-11.
|
[29] |
唐炉亮, 刘章, 杨雪, 等. 符合认知规律的时空轨迹融合与路网生成方法[J]. 测绘学报, 2015, 44(11): 1271-1276. DOI:.
doi: 10.11947/j.AGCS.2015.20140591
|
|
TANG Luliang, LIU Zhang, YANG Xue, et al. A method of spatio-temporal trajectory fusion and road network generation based on cognitive law[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(11): 1271-1276. DOI:.
doi: 10.11947/j.AGCS.2015.20140591
|
[30] |
TANG L, YANG X, KAN Z, et al. Lane-level road information mining from vehicle GPS trajectories based on naïve Bayesian classification[J]. ISPRS International Journal of Geo-Information, 2015, 4(4): 2660-2680.
|
[31] |
LEE J G, HAN J, WHANG K Y. Trajectory clustering: a partition-and-group framework[C]//Proceedings of 2007 ACM SIGMOD International Conference on Management of Data. New York: Association for Computing Machinery, 2007: 593-604.
|
[32] |
VISVALINGAM M, WHYATT J D. The Douglas-Peucker algorithm for line simplification: re-evaluation through visualization[J]. Computer Graphics Forum, 1990, 9(3): 213-225.
|
[33] |
YU F, WANG D, SHELHAMER E, et al. Deep layer aggregation[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2018: 2403-2412.
|
[34] |
PAN X, SHI J, LUO P, et al. Spatial as deep: spatial CNN for traffic scene understanding[J/OL]. Proceedings of the AAAI Conference on Artificial Intelligence. https://doi:org/10.1609/aaai.v32i/.12301.
|
[35] |
YUAN M, YUE P, YANG C, et al. Generating lane-level road networks from high-precision trajectory data with lane-changing behavior analysis[J]. International Journal of Geographical Information Science, 2024, 38(2): 243-273.
|
[36] |
SHU J, WANG S, JIA X, et al. Efficient lane-level map building via vehicle-based crowdsourcing[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(5): 4049-4062.
|