测绘学报 ›› 2025, Vol. 54 ›› Issue (1): 194-205.doi: 10.11947/j.AGCS.2025.20240246

• 地图学与地理信息 • 上一篇    

耦合公众车载影像与GNSS轨迹的精细道路信息众包提取方法

曹正阳1(), 张华祖1, 赵紫龙2, 齐恒1, 唐炉亮1,3()   

  1. 1.武汉大学测绘遥感信息工程国家重点实验室,湖北 武汉 430079
    2.香港中文大学地理与资源管理学系,香港 999077
    3.湖南科技大学地理空间信息技术国家地方联合工程实验室,湖南 湘潭 411201
  • 收稿日期:2024-07-03 修回日期:2025-01-09 发布日期:2025-02-17
  • 通讯作者: 唐炉亮 E-mail:zy.cao@whu.edu.cn;tll@whu.edu.cn
  • 作者简介:曹正阳(1999—),男,硕士生,研究方向为3S集成。 E-mail:zy.cao@whu.edu.cn
  • 基金资助:
    国家重点研发计划(2023YFB3906803)

Crowdsourcing extraction method for refined lane-level road information by integrating public on-board image with GNSS trajectory

Zhengyang CAO1(), Huazu ZHANG1, Zilong ZHAO2, Heng QI1, Luliang TANG1,3()   

  1. 1.Sate Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
    2.Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong 999077, China
    3.National-Local Joint Engineering Laboratory of Geo-Spatial Information Technology, Hunan University of Science and Technology, Xiangtan 411201, China
  • Received:2024-07-03 Revised:2025-01-09 Published:2025-02-17
  • Contact: Luliang TANG E-mail:zy.cao@whu.edu.cn;tll@whu.edu.cn
  • About author:CAO Zhengyang (1999—), male, postgraduate, majors in 3S integration. E-mail: zy.cao@whu.edu.cn
  • Supported by:
    The National Key Research and Development Program of China(2023YFB3906803)

摘要:

精细度高、现势性好的道路地图对于自动驾驶、智能交通等领域至关重要。但现有的道路测绘方法存在数据采集成本高、更新周期长等问题,无法满足智能交通对地图高时空精度的需求。公众车辆上广泛搭载的车载CCD相机与GNSS等传感器,提供了低成本、覆盖广的众包时空数据,可有效弥补传统测绘方法的不足。本文提出了一种耦合公众车载影像与GNSS轨迹的精细道路信息众包提取方法,以解决现有高精度地图成本高、更新慢、现势性低的问题。首先,本文基于跨层细化网络检测车载影像中的车道线信息;然后,基于灭点进行车载相机标定,并提出一种基于马尔可夫链的车道坐标动态计算方法,通过耦合影像与轨迹数据,解算车道线绝对位置;最后,构建一种融合众包GNSS轨迹与影像信息的高精细度道路生成模块,生成精细度高、鲜活性好、具有车道级信息的道路地图。试验以上海市虹口区的真实众包数据集为例,生成的精细道路地图在1 m范围内达到了87.43%的精度,表明本文方法有望成为一种低成本、高鲜度、覆盖广的众包测绘方法,为精细道路信息的获取提供了周期短、成本低的有效解决方案。

关键词: 公众车载影像, GNSS轨迹数据, 精细车道级道路地图, 众包感知

Abstract:

High-precision and up-to-date road maps are crucial for autonomous driving and smart transportation fields. However, existing road extraction methods face challenges such as high data collection costs and long update cycles, failing to meet the high spatio-temporal resolution requirements of intelligent transportation systems. On-board CCD cameras and GNSS sensors, commonly equipped on public vehicles, provide low-cost and widespread crowdsourcing spatio-temporal data, effectively compensating for the shortcomings of traditional mapping methods. In this paper, we propose a low-cost and efficient crowdsourcing method for extracting fine-grained lane information by integrating public on-board images with GNSS trajectories. First, lane markings are detected in on-board images using a cross-layer refinement network. Second, we propose an innovative approach to identify the absolute position of lane markings, which transforms lane markings from perspective space to real-world space. Finally, a fine-grained lane information extraction module that integrates crowdsourcing images with GNSS trajectories is designed, generating the high-precision, fresh and rich semantic lane-level map. Experiments conducted on a real-world dataset from Shanghai, China, demonstrated that the generated lane-level map achieved an accuracy of 87.43% within a 1meter range. These results indicate that the proposed method holds significant promise as a novel, low-cost, up-to-date, and wide-coverage crowdsourced mapping approach. It offers a short-cycle and cost-effective solution for acquiring refined lane information.

Key words: public on-board image, GNSS trajectory data, refined lane-level road information map, crowdsourcing sensing

中图分类号: