测绘学报 ›› 2022, Vol. 51 ›› Issue (6): 1070-1090.doi: 10.11947/j.AGCS.2022.20220155
• 地图学与地理信息 • 上一篇
唐炉亮1, 赵紫龙1, 杨雪2, 阚子涵3, 任畅1, 高婕1, 李朝奎4, 张霞5, 李清泉6
收稿日期:
2022-02-28
修回日期:
2022-03-28
发布日期:
2022-07-02
通讯作者:
赵紫龙
E-mail:zilzhao@whu.edu.cn
作者简介:
唐炉亮(1973-),男,博士,教授,博士生导师,研究方向为时空GIS、轨迹大数据分析与挖掘。E-mail:tll@whu.edu.cn
基金资助:
TANG Luliang1, ZHAO Zilong1, YANG Xue2, KAN Zihan3, REN Chang1, GAO Jie1, LI Chaokui4, ZHANG Xia5, LI Qingquan6
Received:
2022-02-28
Revised:
2022-03-28
Published:
2022-07-02
Supported by:
摘要: 道路场景作为人类发展演变中最重要、最复杂、最典型的载体之一,是道路基础设施与活动行为共同构成的综合体,链接和构建“人地关系”。道路场景感知从二维抽象简略到三维精细丰富、从静态过去式向动态现在时发展,成为智慧城市、智能交通、无人驾驶的关键技术支撑,是我国新型城镇化战略、交通强国战略的核心技术保障。本文立足于时空交通大数据,提出基于道路场景静态基础设施“形”和动态活动行为“流”的高时空分辨率道路场景感知方法。该方法从静态路网“形”角度,以“点-线-面-体”等要素为研究脉络,构建高精度道路地图众包感知的理论体系;在活动行为“流”感知上,突破传统的点模式分析局限,发展了道路网络空间活动流的时空建模与多尺度分析方法。本文揭示了静态基础设施“形”结构与动态活动行为“流”模式交互作用下的道路场景演化规律,形成以“形”控“流”、借“流”定“形”、“形”“流”叠置的高时空精度道路场景众包感知理论体系,为智慧城市、智能交通的发展提供核心技术与数据支撑。
中图分类号:
唐炉亮, 赵紫龙, 杨雪, 阚子涵, 任畅, 高婕, 李朝奎, 张霞, 李清泉. 大数据环境下道路场景高时空分辨率众包感知方法[J]. 测绘学报, 2022, 51(6): 1070-1090.
TANG Luliang, ZHAO Zilong, YANG Xue, KAN Zihan, REN Chang, GAO Jie, LI Chaokui, ZHANG Xia, LI Qingquan. Road crowd-sensing with high spatio-temporal resolution in big data era[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 1070-1090.
[1] 王家耀, 成毅. 论地图学的属性和地图的价值[J]. 测绘学报, 2015, 44(3):237-241. DOI:10.11947/j.AGCS.2015.20140406. WANG Jiayao, CHENG Yi. Discussions on the attributes of cartography and the value of map[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(3):237-241. DOI:10.11947/j.AGCS.2015.20140406. [2] 闾国年, 俞肇元, 袁林旺, 等. 地图学的未来是场景学吗?[J]. 地球信息科学学报, 2018, 20(1):1-6. LV Guonian, YU Zhaoyuan, YUAN Linwang, et al. Is the future of cartography the scenario science?[J]. Journal of Geo-information Science, 2018, 20(1):1-6. [3] 特里·N· 克拉克, 李鹭. 场景理论的概念与分析:多国研究对中国的启示[J]. 东岳论丛, 2017, 38(1):16-24. CLARK T N, LI Lu. Conceptualization and analysis of scenario theory:implications for China from a multinational study[J]. Dongyue Tribune, 2017, 38(1):16-24. [4] 罗伯特·斯考伯, 谢尔·伊斯雷尔. 即将到来的场景时代[M]. 赵乾坤, 周宝曜, 译. 北京:北京联合出版公司, 2014. SCOBLE R, ISRAEL S. Age of context[M]. ZHAO Qiankun, ZHOU Baoyao, trans. Beijing:Beijing United Publishing Company, 2014. [5] 罗桑扎西, 甄峰, 张姗琪. 复杂网络视角下的城市人流空间概念模型与研究框架[J]. 地理研究, 2021, 40(4):1195-1208. LUO Sangzhaxi, ZHEN Feng, ZHANG Shanqi. A conceptual model and methodological framework for examining urban people flow space based on complex network perspective[J]. Geographical Research, 2021, 40(4):1195-1208. [6] 李德仁. 论时空大数据的智能处理与服务[J]. 地球信息科学学报, 2019, 21(12):1825-1831. LI Deren. The intelligent processing and service of spatiotemporal big data[J]. Journal of Geo-information Science, 2019, 21(12):1825-1831. [7] 刘经南, 方媛, 郭迟, 等. 位置大数据的分析处理研究进展[J]. 武汉大学学报(信息科学版), 2014, 39(4):379-385. LIU Jingnan, FANG Yuan, GUO Chi, et al. Research progress in location big data analysis and processing[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4):379-385. [8] 李德仁. 展望大数据时代的地球空间信息学[J]. 测绘学报, 2016, 45(4):379-384. DOI:10.11947/j.AGCS.2016.20160057. LI Deren. Towards geo-spatial information science in big data era[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4):379-384. DOI:10.11947/j.AGCS.2016.20160057. [9] 李清泉, 李德仁. 大数据GIS[J]. 武汉大学学报(信息科学版), 2014, 39(6):641-644, 666. LI Qingquan, LI Deren. Big data GIS[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6):641-644, 666. [10] 吴华意, 黄蕊, 游兰, 等. 出租车轨迹数据挖掘进展[J]. 测绘学报, 2019, 48(11):1341-1356. DOI:10.11947/j.AGCS.2019.20190210. WU Huayi, HUANG Rui, YOU Lan, et al. Recent progress in taxi trajectory data mining[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11):1341-1356. DOI:10.11947/j.AGCS.2019.20190210. [11] 陆化普, 孙智源, 屈闻聪. 大数据及其在城市智能交通系统中的应用综述[J]. 交通运输系统工程与信息, 2015, 15(5):45-52. LU Huapu, SUN Zhiyuan, QU Wencong. Big data and its applications in urban intelligent transportation system[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(5):45-52. [12] 牟乃夏, 张恒才, 陈洁, 等. 轨迹数据挖掘城市应用研究综述[J]. 地球信息科学学报, 2015, 17(10):1135-1142. MOU Naixia, ZHANG Hengcai, CHEN Jie, et al. A review on the application research of trajectory data mining in urban cities[J]. Journal of Geo-Information Science, 2015, 17(10):1135-1142. [13] 刘瑜, 康朝贵, 王法辉. 大数据驱动的人类移动模式和模型研究[J]. 武汉大学学报(信息科学版), 2014, 39(6):660-666. LIU Yu, KANG Chaogui, WANG Fahui. Towards big data-driven human mobility patterns and models[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6):660-666. [14] 杨延杰, 尹丹, 刘紫玟, 等. 基于大数据的流空间研究进展[J]. 地理科学进展, 2020, 39(8):1397-1411. YANG Yanjie, YIN Dan, LIU Ziwen, et al. Research progress on the space of flow using big data[J]. Progress in Geography, 2020, 39(8):1397-1411. [15] 黄建华, 孟伟强, 吴飞霞. 基于信令数据的人流时空分布和移动模式研究[J]. 计算机工程与应用, 2019, 55(23):53-63. HUANG Jianhua, MENG Weiqiang, WU Feixia. Research of human flow spatial-temporal distribution and mobility pattern based on signaling data[J]. Computer Engineering and Applications, 2019, 55(23):53-63. [16] 薛冰, 李京忠, 肖骁, 等. 基于兴趣点(POI)大数据的人地关系研究综述:理论、方法与应用[J]. 地理与地理信息科学, 2019, 35(6):51-60. XUE Bing, LI Jingzhong, XIAO Xiao, et al. Overview of man-land relationship research based on POI data:theory, method and application[J]. Geography and Geo-information Science, 2019, 35(6):51-60. [17] 唐炉亮, 杨雪, 牛乐, 等. 一种众源车载GPS轨迹大数据自适应滤选方法[J]. 测绘学报, 2016, 45(12):1455-1463. DOI:10.11947/j.AGCS.2016.20160117. TANG Luliang, YANG Xue, NIU Le, et al. An adaptive filtering method based on crowdsourced big trace data[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(12):1455-1463. DOI:10.11947/j.AGCS.2016.20160117. [18] HAN Songlai, WANG Jinling. Integrated GPS/INS navigation system with dual-rate Kalman filter[J]. GPS Solutions, 2012, 16(3):389-404. [19] LEE W C, KRUMM J. Trajectory preprocessing[M]//ZHENG Yu, ZHOU Xiaofang. Computing with Spatial Trajectories. New York:Springer, 2011:3-33. [20] WANG Jing, RUI Xiaoping, SONG Xianfeng, et al. A novel approach for generating routable road maps from vehicle GPS traces[J]. International Journal of Geographical Information Science, 2015, 29(1):69-91. [21] TANG Luliang, YANG Xue, KAN Zihan, et al. Lane-level road information mining from vehicle GPS trajectories based on naive bayesian classification[J]. ISPRS International Journal of Geo-Information, 2015, 4(4):2660-2680. [22] YANG Xue, TANG Luliang, ZHANG Xia, et al. A data cleaning method for big trace data using movement consistency[J]. Sensors, 2018, 18(3):824. [23] 李霖, 杨蕾. 公众参与的兴趣点数据有效性效验方法[J]. 测绘科学, 2015, 40(7):98-103. LI Lin, YANG Lei. A verifying method on validity of POI data involving public participation[J]. Science of Surveying and Mapping, 2015, 40(7):98-103. [24] MACEACHREN A M, GAHEGAN M, PIKE W, et al. Geovisualization for knowledge construction and decision support[J]. IEEE Computer Graphics and Applications, 2004, 24(1):13-17. [25] 禹文豪, 艾廷华, 周启. 设施POI的局部空间同位模式挖掘及范围界定[J]. 地理与地理信息科学, 2015, 31(4):6-11. YU Wenhao, AI Tinghua, ZHOU Qi. Regional co-location pattern mining and scoping from urban facility POI[J]. Geography and Geo-Information Science, 2015, 31(4):6-11. [26] 陈世莉, 陶海燕, 李旭亮, 等. 基于潜在语义信息的城市功能区识别——广州市浮动车GPS时空数据挖掘[J]. 地理学报, 2016, 71(3):471-483. CHEN Shili, TAO Haiyan, LI Xuliang, et al. Discovering urban functional regions using latent semantic information:Spatiotemporal data mining of floating cars GPS data of Guangzhou[J]. Acta Geographica Sinica, 2016, 71(3):471-483. [27] 赵彦云, 张波, 周芳. 基于POI的北京市"15分钟社区生活圈"空间测度研究[J]. 调研世界, 2018(5):17-24. ZHAO Yanyun, ZHANG Bo, ZHOU Fang. Research on the spatial measurement of "15-minute community life circle" in Beijing based on POI[J]. The World of Survey and Research, 2018(5):17-24. [28] 廖心治, 王华, 赵万民. 融合地图数据的山地城市医疗设施服务覆盖评估方法研究[J]. 地球信息科学学报, 2021, 23(4):604-616. LIAO Xinzhi, WANG Hua, ZHAO Wanmin. Evaluation method of medical facilities service coverage in mountainous cities based on map data[J]. Journal of Geo-information Science, 2021, 23(4):604-616. [29] JAHROMI K K, ZIGNANI M, GAITO S, et al. Simulating human mobility patterns in urban areas[J]. Simulation Modelling Practice and Theory, 2016, 62:137-156. [30] NOULAS A, SCELLATO S, LATHIA N, et al. A random walk around the city:new venue recommendation in location-based social networks[C]//Proceedings of 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing. Amsterdam:IEEE, 2012:144-153. [31] 曲畅, 任玉环, 刘亚岚, 等. POI辅助下的高分辨率遥感影像城市建筑物功能分类研究[J]. 地球信息科学学报, 2017, 19(6):831-837. QU Chang, REN Yuhuan, LIU Yalan, et al. Functional classification of urban buildings in high resolution remote sensing images through POI-assisted analysis[J]. Journal of Geo-information Science, 2017, 19(6):831-837. [32] 陈瑞. 基于多源POI数据的匹配融合方法研究[D]. 兰州:兰州交通大学, 2014. CHEN Rui. Study on the method of matching and fusion based on the multi-source POI data[D]. Lanzhou:Lanzhou Jiaotong University, 2014. [33] 曹云刚, 王志盼, 慎利, 等. 像元与对象特征融合的高分辨率遥感影像道路中心线提取[J]. 测绘学报, 2016, 45(10):1231-1240, 1249. DOI:10.11947/j.AGCS.2016.20160158. CAO Yungang, WANG Zhipan, SHEN Li, et al. Fusion of pixel-based and object-based features for road centerline extraction from high-resolution satellite imagery[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(10):1231-1240, 1249. DOI:10.11947/j.AGCS.2016.20160158. [34] 郑年波, 陆锋, 李清泉. 面向导航的动态多尺度路网数据模型[J]. 测绘学报, 2010, 39(4):428-434. ZHENG Nianbo, LU Feng, LI Qingquan. Dynamic multi-scale road network data model for navigation[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(4):428-434. [35] UDUWARAGODA E R I A C M, PERERA A S, DIAS S A D. Generating lane level road data from vehicle trajectories using kernel density estimation[C]//Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013). Hague:IEEE, 2013:384-391. [36] 黄敏, 饶明雷, 李敏. 面向仿真的车道级基础路网模型及其应用[J]. 系统仿真学报, 2014, 26(3):657-661, 681. HUANG Min, RAO Minglei, LI Min. Research of lane-level basic road network model for simulation and its application[J]. Journal of System Simulation, 2014, 26(3):657-661, 681. [37] CHEN Yihua, KRUMM J. Probabilistic modeling of traffic lanes from GPS traces[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. San Jose:ACM, 2010:81-88. [38] 唐炉亮, 牛乐, 杨雪, 等. 利用轨迹大数据进行城市道路交叉口识别及结构提取[J]. 测绘学报, 2017, 46(6):770-779. DOI:10.11947/j.AGCS.2017.20160614. TANG Luliang, NIU Le, YANG Xue, et al. Urban intersection recognition and construction based on big trace data[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(6):770-779. DOI:10.11947/j.AGCS.2017.20160614. [39] LIU Jiang, CAI Baigen, WANG Yunpeng, et al. Generating enhanced intersection maps for lane level vehicle positioning based applications[J]. Procedia-Social and Behavioral Sciences, 2013, 96:2395-2403. [40] YANG Xue, TANG Luliang, NIU Le, et al. Generating lane-based intersection maps from crowdsourcing big trace data[J]. Transportation Research Part C:Emerging Technologies, 2018, 89:168-187. [41] 尹彤, 黄鹤, 郭迟, 等. 面向自动驾驶的高精地图生产技术及数据模型标准化探讨[J]. 中国标准化, 2021(4):33-37. YIN Tong, HUANG He, GUO Chi, et al. Discussion on high-definition map production technology and data model standardization for autonomous driving[J]. China Standardization, 2021(4):33-37. [42] 侯翘楚, 李必军, 蔡毅. 高分辨率遥感影像的车道级高精地图要素提取[J]. 测绘通报, 2021(3):38-43. DOI:10.13474/j.cnki.11-2246.2021.0075. HOU Qiaochu, LI Bijun, CAI Yi. High-precision lane-level map elements extracting based on high-resolution remote sensing image[J]. Bulletin of Surveying and Mapping, 2021(3):38-43. DOI:10.13474/j.cnki.11-2246.2021.0075. [43] 钟棉卿. 基于移动激光雷达数据的路面状况检测方法研究[D]. 西安:长安大学, 2020. ZHONG Mianqing. Research on methods of pavement condition survey using mobile laser scanning data[D]. Xi'an:Chang'an University, 2020. [44] ZHENG Ling, LI Bijun, YANG Bo, et al. Lane-level road network generation techniques for lane-level maps of autonomous vehicles:a survey[J]. Sustainability, 2019, 11(16):4511. [45] 唐炉亮, 杨雪, 阚子涵, 等. 一种基于朴素贝叶斯分类的车道数量探测[J]. 中国公路学报, 2016, 29(3):116-123. TANG Luliang, YANG Xue, KAN Zihan, et al. Traffic lane numbers detection based on the naive bayesian classification[J]. China Journal of Highway and Transport, 2016, 29(3):116-123. [46] TANG Luliang, YANG Xue, DONG Zhen, et al. CLRIC:collecting lane-based road information via crowdsourcing[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(9):2552-2562. [47] YANG Xue, TANG Luliang, STEWART K, et al. Automatic change detection in lane-level road networks using GPS trajectories[J]. International Journal of Geographical Information Science, 2018, 32(3):601-621. [48] TANG Jianbo, DENG Min, HUANG Jincai, et al. An automatic method for detection and update of additive changes in road network with GPS trajectory data[J]. ISPRS International Journal of Geo-Information, 2019, 8(9):411. [49] CROOKS A, PFOSER D, JENKINS A, et al. Crowdsourcing urban form and function[J]. International Journal of Geographical Information Science, 2015, 29(5):720-741. [50] 崔海福. 基于浮动车数据的多维度城市功能区划分研究[D]. 武汉:中国地质大学, 2021. CUI Haifu. The study of multidimensional urban functional district division based on the floating car data[D]. Wuhan:China University of Geosciences, 2021. [51] YUAN Jing, ZHENG Yu, XIE Xing. Discovering regions of different functions in a city using human mobility and POIs[C]//Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. Beijing:Association for Computing Machinery, 2012:186-194. [52] 王胜利. 深度学习在城市功能区域划分中的应用研究[D]. 成都:电子科技大学, 2018. WANG Shengli. Urban functional regions discovering based on deep learning[D]. Chengdu:University of Electronic Science and Technology of China, 2018. [53] 凌鹏, 诸彤宇, 周轶, 等. 基于人群出行行为轨迹的城市功能区识别[J/OL]. 计算机工程:1-8.[2022-04-07]. https://kns.cnki.net/kcms/detail/31.1289.TP.20210728.1849.022.html. LING Peng, ZHU Tongyu, ZHOU Yi, et al. Urban functional area recognition based on crowd travel behavior trajectory[J/OL]. Computer Engineering:1-8.[2022-04-07]. https://kns.cnki.net/kcms/detail/31.1289.TP.20210728.1849.022.html. [54] ZHI Ye, LI Haifeng, WANG Dashan, et al. Latent spatio-temporal activity structures:a new approach to inferring intra-urban functional regions via social media check-in data[J]. Geo-spatial Information Science, 2016, 19(2):94-105. [55] LIU Xiaoping, HE Jialv, YAO Yao, et al. Classifying urban land use by integrating remote sensing and social media data[J]. International Journal of Geographical Information Science, 2017, 31(8):1675-1696. [56] TANG Luliang, GAO Jie, REN Chang, et al. Detecting and evaluating urban clusters with spatiotemporal big data[J]. Sensors, 2019, 19(3):461. [57] 刘耀丹. 立体交通三维道路网快速构建算法研究[D]. 郑州:郑州大学, 2017. LIU Yaodan. Fast construction algorithm of the three-dimensional road network[D]. Zhengzhou:Zhengzhou University, 2017. [58] 朱庆. 三维GIS及其在智慧城市中的应用[J]. 地球信息科学学报, 2014, 16(2):151-157. ZHU Qing. Full three-dimensional GIS and its key roles in smart city[J]. Journal of Geo-information Science, 2014, 16(2):151-157. [59] 杜建丽, 陈动, 张振鑫, 等. 建筑点云几何模型重建方法研究进展[J]. 遥感学报, 2019, 23(3):374-391. DU Jianli, CHEN Dong, ZHANG Zhenxin, et al. Research progress of building reconstruction via airborne point clouds[J]. Journal of Remote Sensing, 2019, 23(3):374-391. [60] 苗志成, 杨永崇, 于庆和, 等. 贴近摄影测量在单体建筑物精细化建模中的应用[J]. 遥感信息, 2021, 36(5):107-113. MIAO Zhicheng, YANG Yongchong, YU Qinghe, et al. Application of nap-of-the-object photogrammetry in fine modeling of single building[J]. Remote Sensing Information, 2021, 36(5):107-113. [61] 符钟壬. 基于倾斜摄影测量与激光雷达点云匹配的建筑物三维模型研究[D]. 昆明:云南大学, 2020. FU Zhongren. Research on building three-dimensional model based on oblique photogrammetry and LiDAR point cloud data registration[D]. Kunming:Yunnan University, 2020. [62] CAO Rujun, ZHANG Yongjun, LIU Xinyi, et al. 3D building roof reconstruction from airborne LiDAR point clouds:a framework based on a spatial database[J]. International Journal of Geographical Information Science, 2017, 31(7):1359-1380. [63] 唐炉亮, 于智伟, 任畅, 等. 基于车载GPS轨迹的立体交叉口空间结构信息获取方法[J]. 交通运输工程学报, 2019, 19(5):170-179. TANG Luliang, YU Zhiwei, REN Chang, et al. Information acquisition method of three-dimensional intersection spatial structure based on vehicle GPS trajectory[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5):170-179. [64] YEH A G O, ZHONG Teng, YUE Yang. Angle difference method for vehicle navigation in multilevel road networks with a three-dimensional transport GIS database[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(1):140-152. [65] REN Chang, TANG Luliang, YANG Xue, et al. Mapping grade-separated junctions in detail using crowdsourced trajectory data[J]. IEEE Transactions on Intelligent Transportation Systems, 2021. DOI:10.1109/TITS.2021.3054910. [66] CASTELLS M. The informational city:Information technology, economic restructuring, and the urban-regional process[M]. Oxford:B. Blackwell, 1989. [67] 沈丽珍, 顾朝林. 区域流动空间整合与全球城市网络构建[J]. 地理科学, 2009, 29(6):787-793. SHEN Lizhen, GU Chaolin. Integration of regional space of flows and construction of global urban network[J]. Scientia Geographica Sinica, 2009, 29(6):787-793. [68] BORRUSO G. Network density estimation:analysis of point patterns over a network[C]//International Conference on Computational Science and Its Applications. Singapore:Springer, 2005:126-132. [69] BORRUSO G. Network density estimation:a GIS approach for analysing point patterns in a network space[J]. Transactions in GIS, 2008, 12(3):377-402. [70] 萧世伦, 方志祥. 从时空GIS视野来定量分析人类行为的思考[J]. 武汉大学学报(信息科学版), 2014, 39(6):667-670. SHAW Shihlung, FANG Zhixiang. Rethinking human behavior research from the perspective of space-time GIS[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6):667-670. [71] YU Hongbo, SHAW S L. Exploring potential human activities in physical and virtual spaces:a spatio-temporal GIS approach[J]. International Journal of Geographical Information Science, 2008, 22(4):409-430. [72] 陈洁, 萧世伦, 陆锋. 面向人类行为研究的时空GIS[J]. 地球信息科学学报, 2016, 18(12):1583-1587. CHEN Jie, SHAW ShihLung, LU Feng. A space-time GIS approach for human behavior studies[J]. Journal of Geo-information Science, 2016, 18(12):1583-1587. [73] GVTING R H, DE ALMEIDA V T, DING Zhiming. Modeling and querying moving objects in networks[J]. The VLDB Journal, 2006, 15(2):165-190. [74] LONG J A, NELSON T A. A review of quantitative methods for movement data[J]. International Journal of Geographical Information Science, 2013, 27(2):292-318. [75] YANG Lin, KWAN M P, PAN Xiaofang, et al. Scalable space-time trajectory cube for path-finding:a study using big taxi trajectory data[J]. Transportation Research Part B:Methodological, 2017, 101:1-27. [76] TANG Jinjun, LIU Fang, WANG Yinhai, et al. Uncovering urban human mobility from large scale taxi GPS data[J]. Physica A:Statistical Mechanics and Its Applications, 2015, 438:140-153. [77] PARZEN E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962, 33(3):1065-1076. [78] BAILEY T C, GATRELL A C. Interactive spatial data analysis[M]. Harlow Essex:Longman Scientific & Technical, 1995. [79] SILVERMAN B W. Density estimation for statistics and data analysis[M]. London:Routledge, 2018. [80] FLAHAUT B, MOUCHART M, SAN MARTIN E, et al. The local spatial autocorrelation and the kernel method for identifying black zones:a comparative approach[J]. Accident Analysis & Prevention, 2003, 35(6):991-1004. [81] TIMOTHOE P, NICOLAS L B, EMANUELE S, et al. A network based kernel density estimator applied to barcelona economic activities[C]//Proceedings of 2010 International Conference on Computational Science and its Applications. Fukuoka:ACM, 2010:32-45. [82] YING Lingxiao, SHEN Zehao, CHEN Jiding, et al. Spatiotemporal patterns of road network and road development priority in three parallel rivers region in Yunnan, China:an evaluation based on modified kernel distance estimate[J]. Chinese Geographical Science, 2014, 24(1):39-49. [83] CAI Xuejiao, WU Zhifeng, CHENG Jiong. Using kernel density estimation to assess the spatial pattern of road density and its impact on landscape fragmentation[J]. International Journal of Geographical Information Science, 2013, 27(2):222-230. [84] ERDOGAN S, YILMAZ I, BAYBURA T, et al. Geographical information systems aided traffic accident analysis system case study:city of Afyonkarahisar[J]. Accident Analysis & Prevention, 2008, 40(1):174-181. [85] HA H H, THILL J C. Analysis of traffic hazard intensity:a spatial epidemiology case study of urban pedestrians[J]. Computers, Environment and Urban Systems, 2011, 35(3):230-240. [86] LAHR H. An improved test for earnings management using kernel density estimation[J]. European Accounting Review, 2014, 23(4):559-591. [87] OKABE A, SATOH T, SUGIHARA K. A kernel density estimation method for networks, its computational method and a GIS-based tool[J]. International Journal of Geographical Information Science, 2009, 23(1):7-32. [88] LEE D, HAHN M. A study on density map based crash analysis[C]//Proceedings of 2014 International Conference on Information Science & Applications (ICISA). Seoul:IEEE, 2014:1-3. [89] TANG Luliang, KAN Zihan, ZHANG Xia, et al. Travel time estimation at intersections based on low-frequency spatial-temporal GPS trajectory big data[J]. Cartography and Geographic Information Science, 2016, 43(5):417-426. [90] TANG Luliang, KAN Zihan, ZHANG Xia, et al. A network kernel density estimation for linear features in space-time analysis of big trace data[J]. International Journal of Geographical Information Science, 2016, 30(9):1717-1737. [91] 唐炉亮, 阚子涵, 刘汇慧, 等. 网络空间中线要素的核密度估计方法[J]. 测绘学报, 2017, 46(1):107-113. DOI:10.11947/j.AGCS.2017.20150158. TANG Luliang, KAN Zihan, LIU Huihui, et al. A kernel density estimation method for linear features in network space[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1):107-113. DOI:10.11947/j.AGCS.2017.20150158. [92] RIPLEY B D. The second-order analysis of stationary point processes[J]. Journal of Applied Probability, 1976, 13(2):255-266. [93] GETIS A, FRANKLIN J. Second-order neighborhood analysis of mapped point patterns[M]//ANSELIN L, REY S. Perspectives on Spatial Data Analysis. Berlin:Springer, 2010:93-100. [94] OKABE A, YAMADA I. The K-function method on a network and its computational implementation[J]. Geographical Analysis, 2001, 33(3):271-290. [95] DAY P L, PEARCE J. Obesity-promoting food environments and the spatial clustering of food outlets around schools[J]. American Journal of Preventive Medicine, 2011, 40(2):113-121. [96] YAMADA I, THILL J C. Comparison of planar and network K-functions in traffic accident analysis[J]. Journal of Transport Geography, 2004, 12(2):149-158. [97] 王结臣, 卢敏, 苑振宇, 等. 基于Ripley's K函数的南京市ATM网点空间分布模式研究[J]. 地理科学, 2016, 36(12):1843-1849. WANG Jiechen, LU Min, YUAN Zhenyu, et al. Point pattern analysis of ATMs distribution based on ripley's K-function method in Nanjing city[J]. Scientia Geographica Sinica, 2016, 36(12):1843-1849. [98] TAO R, THILL J C. Spatial cluster detection in spatial flow data[J]. Geographical Analysis, 2016, 48(4):355-372. [99] KAN Zihan, KWAN M P, TANG Luliang. Ripley's K-function for network-constrained flow data[J]. Geographical Analysis, 2021. DOI:10.1111/gean.12300. [100] 许学强, 周一星, 宁越敏. 城市地理学[M]. 2版. 北京:高等教育出版社, 2009. XU Xueqiang, ZHOU Yixing, NING Yuemin. Urban geography[M]. 2nd ed. Beijing:Higher Education Press, 2009. [101] 钮心毅, 丁亮, 宋小冬. 基于手机数据识别上海中心城的城市空间结构[J]. 城市规划学刊, 2014(6):61-67. NIU Xinyi, DING Liang, SONG Xiaodong. Understanding urban spatial structure of shanghai central city based on mobile phone data[J]. Urban Planning Forum, 2014(6):61-67. [102] 王德, 王灿, 谢栋灿, 等. 基于手机信令数据的上海市不同等级商业中心商圈的比较——以南京东路、五角场、鞍山路为例[J]. 城市规划学刊, 2015(3):50-60. WANG De, WANG Can, XIE Dongcan, et al. Comparison of retail trade areas of retail centers with different hierarchical levels:a case study of east Nanjing road, Wujiaochang, Anshan road in Shanghai[J]. Urban Planning Forum, 2015(3):50-60. [103] 罗桑扎西, 甄峰. 基于手机数据的城市公共空间活力评价方法研究——以南京市公园为例[J]. 地理研究, 2019, 38(7):1594-1608. LUO Sangzhaxi, ZHEN Feng. How to evaluate public space vitality based on mobile phone data:an empirical analysis of Nanjing's parks[J]. Geographical Research, 2019, 38(7):1594-1608. [104] 秦昆, 周勍, 徐源泉, 等. 城市交通热点区域的空间交互网络分析[J]. 地理科学进展, 2017, 36(9):1149-1157. QIN Kun, ZHOU Qing, XU Yuanquan, et al. Spatial interaction network analysis of urban traffic hotspots[J]. Progress in Geography, 2017, 36(9):1149-1157. [105] 郑林江, 赵欣, 蒋朝辉, 等. 基于出租车轨迹数据的城市热点出行区域挖掘[J]. 计算机应用与软件, 2018, 35(1):1-8. ZHENG Linjiang, ZHAO Xin, JIANG Zhaohui, et al. Mining urban attractive areas using taxi trajectory data[J]. Computer Applications and Software, 2018, 35(1):1-8. [106] LWIN K K, SEKIMOTO Y, TAKEUCHI W. Estimation of hourly link population and flow directions from mobile CDR[J]. ISPRS International Journal of Geo-Information, 2018, 7(11):449. [107] GAO Jie, YANG Xue, TANG Luliang, et al. Understanding urban hospital bypass behaviour based on big trace data[J]. Cities, 2020, 103:102739. [108] 孙道胜, 柴彦威. 城市社区生活圈体系及公共服务设施空间优化——以北京市清河街道为例[J]. 城市发展研究, 2017, 24(9):7-14, 25. SUN Daosheng, CHAI Yanwei. Study on the urban community life sphere system and the optimization of public service facilities:a case study of Qinghe area in Beijing[J]. Urban Development Studies, 2017, 24(9):7-14, 25. [109] 柴彦威, 李春江, 张艳. 社区生活圈的新时间地理学研究框架[J]. 地理科学进展, 2020, 39(12):1961-1971. CHAI Yanwei, LI Chunjiang, ZHANG Yan. A new time-geography research framework of community life circle[J]. Progress in Geography, 2020, 39(12):1961-1971. [110] XIE Peng, LI Tianrui, LIU Jia, et al. Urban flow prediction from spatiotemporal data using machine learning:a survey[J]. Information Fusion, 2020, 59:1-12. [111] 方孟元, 唐炉亮, 杨雪, 等. 基于低频GNSS轨迹的转向级城市交通信息精细预测[J]. 测绘学报, 2021, 50(11):1469-1477. DOI:10.11947/j.AGCS.2021.20210252. FANG Mengyuan, TANG Luliang, YANG Xue, et al. Fine-grained traffic information prediction at the turning-level based on low-frequency GNSS trajectory data[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(11):1469-1477. DOI:10.11947/j.AGCS.2021.20210252. [112] WANG Jingyuan, WU Junjie, WANG Ze, et al. Understanding urban dynamics via context-aware tensor factorization with neighboring regularization[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(11):2269-2283. [113] 易嘉伟, 王楠, 千家乐, 等. 基于大数据的极端暴雨事件下城市道路交通及人群活动时空响应[J]. 地理学报, 2020, 75(3):497-508. YI Jiawei, WANG Nan, QIAN Jiale, et al. Spatio-temporal responses of urban road traffic and human activities in an extreme rainfall event using big data[J]. Acta Geographica Sinica, 2020, 75(3):497-508. [114] 唐炉亮, 戴领, 任畅, 等. 现实与赛博空间数据相结合的城市活动事件时空建模[J]. 测绘学报, 2019, 48(5):618-629. DOI:10.11947/j.AGCS.2019.20180327. TANG Luliang, DAI Ling, REN Chang, et al. Spatio-temporal modeling of city events combining datasets in cyberspace and real space[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(5):618-629. DOI:10.11947/j.AGCS.2019.20180327. [115] REN Mengyao, LIN Yaoyu, JIN Meihan, et al. Examining the effect of land-use function complementarity on intra-urban spatial interactions using metro smart card records[J]. Transportation, 2020, 47(4):1607-1629. [116] 唐炉亮, 阚子涵, 任畅, 等. 利用GPS轨迹的转向级交通拥堵精细分析[J]. 测绘学报, 2019, 48(1):75-85. DOI:10.11947/j.AGCS.2019.20170448. TANG Luliang, KAN Zihan, REN Chang, et al. Fine-grained analysis of traffic congestions at the turning level using GPS traces[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1):75-85. DOI:10.11947/j.AGCS.2019.20170448. [117] TSEKERIS T, GEROLIMINIS N. City size, network structure and traffic congestion[J]. Journal of Urban Economics, 2013, 76:1-14. [118] JIANG Zhihan, LIU Yan, FAN Xiaoliang, et al. Understanding urban structures and crowd dynamics leveraging large-scale vehicle mobility data[J]. Frontiers of Computer Science, 2020, 14(5):145310. [119] XU Lin, YUE Yang, LI Qingquan. Identifying urban traffic congestion pattern from historical floating car data[C]//Proceedings of the 13th COTA International Conference of Transportation Professionals (CICTP). Shenzhen:CICTP, 2013:2084-2095. [120] DOUXCHAMPS D, MACQ B, CHIHARA K. High accuracy traffic monitoring using road-side line-scan cameras[C]//Proceedings of 2006 IEEE Intelligent Transportation Systems Conference. Toronto:IEEE, 2006:875-878. [121] 郑治豪, 吴文兵, 陈鑫, 等. 基于社交媒体大数据的交通感知分析系统[J]. 自动化学报, 2018, 44(4):656-666. ZHENG Zhihao, WU Wenbing, CHEN Xin, et al. A traffic sensing and analyzing system using social media data[J]. Acta Automatica Sinica, 2018, 44(4):656-666. [122] 刘昭, 何赏璐, 刘英舜. 基于社交网络数据的交通突发事件识别方法[J]. 交通信息与安全, 2021, 39(2):53-60. LIU Zhao, HE Shanglu, LIU Yingshun. A method to identify traffic incidents based on social network data[J]. Journal of Transport Information and Safety, 2021, 39(2):53-60. [123] D'ANDREA E, MARCELLONI F. Detection of traffic congestion and incidents from GPS trace analysis[J]. Expert Systems with Applications, 2017, 73:43-56. [124] 付子圣, 李秋萍, 柳林, 等. 利用GPS轨迹二次聚类方法进行道路拥堵精细化识别[J]. 武汉大学学报(信息科学版), 2017, 42(9):1264-1270. FU Zisheng, LI Qiuping, LIU Lin, et al. Identification of urban network congested segments using GPS trajectories double-clustering method[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9):1264-1270. [125] 陈林武. 基于浮动车数据的城市道路交通事件自动检测技术研究[D]. 金华:浙江师范大学, 2020. CHEN Linwu. Research on automatic detection technology of urban road traffic events based on floating vehicle data[D]. Jinhua:Zhejiang Normal University, 2020. [126] 周思远. 基于车辆轨迹大数据的城市道路交通事件检测方法研究[D]. 北京:北方工业大学, 2019. ZHOU Siyuan. Research on urban road traffic incident detection method based on big data of vehicle trajectory[D]. Beijing:North China University of Technology, 2019. [127] 段滢滢, 陆锋. 基于道路结构特征识别的城市交通状态空间自相关分析[J]. 地球信息科学学报, 2012, 14(6):768-774. DUAN Yingying, LU Feng. Spatial autocorrelation of urban road traffic based on road network characterization[J]. Journal of Geo-information Science, 2012, 14(6):768-774. [128] 刘康, 段滢滢, 陆锋. 基于拓扑与形态特征的城市道路交通状态空间自相关分析[J]. 地球信息科学学报, 2014, 16(3):390-395. LIU Kang, DUAN Yingying, LU Feng. Spatial autocorrelation analysis of urban road traffic based on topological and geometric properties[J]. Journal of Geo-information Science, 2014, 16(3):390-395. [129] WANG Zuchao, LU Min, YUAN Xiaoru, et al. Visual traffic jam analysis based on trajectory data[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12):2159-2168. [130] YE Jiexia, ZHAO Juanjuan, YE Kejiang, et al. How to build a graph-based deep learning architecture in traffic domain:a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2020. DOI:10.1109/TITS.2020.3043250. [131] 王竟成, 张勇, 胡永利, 等. 基于图卷积网络的交通预测综述[J]. 北京工业大学学报, 2021, 47(8):954-970. WANG Jingcheng, ZHANG Yong, HU Yongli, et al. Survey on graph convolutional neural network-based traffic prediction[J]. Journal of Beijing University of Technology, 2021, 47(8):954-970. [132] 任建华, 朱尧, 孟祥福, 等. 使用动态时空神经网络的市区交通流量预测[J/OL]. 小型微型计算机系统.[2022-04-07]. https://kns.cnki.net/kcms/detail/21.1106.TP.20211213.1804.030.html. REN Jianhua, ZHU Yao, MENG Xiangfu, et al. Predicting citywide traffic flow using dynamic spatial-temporal neural networks[J/OL]. Journal of Chinese Computer Systems.[2022-04-08]. https://kns.cnki.net/kcms/detail/21.1106.TP.20211213.1804.030.html. [133] CASTRO P S, ZHANG Daqing, LI Shijian. Urban traffic modelling and prediction using large scale taxi GPS traces[C]//Proceedings of the 10th International Conference on Pervasive Computing. Newcastle:Springer, 2012:57-72. [134] TANG Jinjun, HU Jin, HAO Wei, et al. Markov Chains based route travel time estimation considering link spatio-temporal correlation[J]. Physica A:Statistical Mechanics and its Applications, 2020, 545:123759. [135] 黄敏, 毛锋, 钱宇翔. 基于出租车司机经验的约束深度强化学习算法路径挖掘[J]. 计算机应用研究, 2020, 37(5):1298-1302. HUANG Min, MAO Feng, QIAN Yuxiang. Mining fastest route using taxi drivers'experience via constrained deep reinforcement learning[J]. Application Research of Computers, 2020, 37(5):1298-1302. [136] NOLLE T, SCHWEIZER I, JANSSEN F. Data-driven detection of congestion-affected roads[R]. Technical Report TUD-KE-2014-02, 2014. [137] JIANG Kun, YANG Diange, LIU Chaoran, et al. A flexible multi-layer map model designed for lane-level route planning in autonomous vehicles[J]. Engineering, 2019, 5(2):305-318. [138] KAN Zihan, TANG Luliang, KWAN M P, et al. Traffic congestion analysis at the turn level using Taxis' GPS trajectory data[J]. Computers, Environment and Urban Systems, 2019, 74:229-243. [139] FANG Mengyuan, TANG Luliang, YANG Xue, et al. FTPG:a fine-grained traffic prediction method with graph attention network using big trace data[J]. IEEE Transactions on Intelligent Transportation Systems, 2021. DOI:10.1109/TITS.2021.3049264. [140] 诸立超, 甄伟, 刘昭然. 生命周期视角下货运通道能耗测度与节能潜力分析[J]. 交通运输系统工程与信息, 2022, 22(1):24-29, 36. ZHU Lichao, ZHEN Wei, LIU Zhaoran. Energy consumption measurement and energy-saving potential analysis of freight corridors from perspective of life cycle[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1):24-29, 36. [141] KOUPAL J, BEARDSLEY M, BRZEZINSKI D, et al. US EPA's MOVES2010 vehicle emission model:overview and considerations for international application[EB/OL]. Ann Arbor, MI:US Environmental Protection Agency, Office of Transportation and Air Quality.[2022-03-10].https://www.epa.gov/sites/default/files/2019-08/documents/paper137-tap2010.pdf |
[1] | 张兵, 杨晓梅, 高连如, 孟瑜, 孙显, 肖晨超, 倪丽. 遥感大数据智能解译的地理学认知模型与方法[J]. 测绘学报, 2022, 51(7): 1398-1415. |
[2] | 刘耀林, 刘启亮, 邓敏, 石岩. 地理大数据挖掘研究进展与挑战[J]. 测绘学报, 2022, 51(7): 1544-1560. |
[3] | 王家耀, 武芳, 闫浩文. 大变化时代的地图学[J]. 测绘学报, 2022, 51(6): 829-842. |
[4] | 李德仁, 徐小迪, 邵振峰. 论万物互联时代的地球空间信息学[J]. 测绘学报, 2022, 51(1): 1-8. |
[5] | 李志林, 刘万增, 徐柱, 遆鹏, 高培超, 闫超德, 林艳, 李然, 陆辰妮. 时空数据地图表达的基本问题与研究进展[J]. 测绘学报, 2021, 50(8): 1033-1048. |
[6] | 陈龙, 刘坤华, 周宝定, 李清泉. 多智能体协同高精地图构建关键技术研究[J]. 测绘学报, 2021, 50(11): 1447-1456. |
[7] | 夏吉喆, 周颖, 李珍, 李帆, 乐阳, 程涛, 李清泉. 城市时空大数据驱动的新型冠状病毒传播风险评估——以粤港澳大湾区为例[J]. 测绘学报, 2020, 49(6): 671-680. |
[8] | 杨必胜, 董震. 点云智能研究进展与趋势[J]. 测绘学报, 2019, 48(12): 1575-1585. |
[9] | 王培晓, 张恒才, 王海波, 吴升. ST-CFSFDP:快速搜索密度峰值的时空聚类算法[J]. 测绘学报, 2019, 48(11): 1380-1390. |
[10] | 唐炉亮, 阚子涵, 任畅, 张霞, 李清泉. 利用GPS轨迹的转向级交通拥堵精细分析[J]. 测绘学报, 2019, 48(1): 75-85. |
[11] | 郑茂腾, 周顺平, 熊小东, 朱俊峰. GPU并行区域网平差[J]. 测绘学报, 2017, 46(9): 1193-1201. |
[12] | 唐炉亮, 牛乐, 杨雪, 张霞, 李清泉, 萧世伦. 利用轨迹大数据进行城市道路交叉口识别及结构提取[J]. 测绘学报, 2017, 46(6): 770-779. |
[13] | 郑茂腾, 张永军, 朱俊峰, 熊小东, 周顺平. 一种快速有效的大数据区域网平差方法[J]. 测绘学报, 2017, 46(2): 188-197. |
[14] | 唐炉亮, 阚子涵, 段倩, 李清泉. 一种时空路径支持下的车辆油耗与排放估计方法[J]. 测绘学报, 2017, 46(12): 2024-2031. |
[15] | 王家耀. 时空大数据时代的地图学[J]. 测绘学报, 2017, 46(10): 1226-1237. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||