测绘学报 ›› 2022, Vol. 51 ›› Issue (6): 1062-1069.doi: 10.11947/j.AGCS.2022.20220125

• 地图学与地理信息 • 上一篇    下一篇

从地理规律到地理空间人工智能

刘瑜1,2, 郭浩1, 李海峰3, 董卫华4, 裴韬5   

  1. 1. 北京大学遥感与地理信息系统研究所, 北京 100871;
    2. 北京大学人工智能研究院, 北京 100871;
    3. 中南大学地球科学与信息物理学院, 湖南 长沙 410083;
    4. 北京师范大学地理科学学部, 北京 100875;
    5. 中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室, 北京 100101
  • 收稿日期:2022-02-24 修回日期:2022-04-11 发布日期:2022-07-02
  • 作者简介:刘瑜(1971-),男,博士,教授,博士生导师,主要从事地理信息科学与地理大数据理论方法研究。E-mail:liuyu@urban.pku.edu.cn
  • 基金资助:
    国家自然科学基金(41830645;41971331)

A note on GeoAI from the perspective of geographical laws

LIU Yu1,2, GUO Hao1, LI Haifeng3, DONG Weihua4, PEI Tao5   

  1. 1. Institute of Remote Sensing and Geographic Information System, Peking University, Beijing 100871, China;
    2. Institute for Artificial Intelligence, Peking University, Beijing 100871, China;
    3. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China;
    4. Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China;
    5. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2022-02-24 Revised:2022-04-11 Published:2022-07-02
  • Supported by:
    The National Natural Science Foundation of China(Nos. 41830645;41971331)

摘要: 近年来,人工智能技术快速发展,影响了很多学科的研究范式。对于地理学而言,这种趋势也不例外。从知识发现的角度,地理学研究主要有两个任务,即揭示未知的具体事实和发现一般性的规律机理。在这两个方面,人工智能技术可帮助地理学家发现知识甚至自动提取知识。相对于地球科学其他学科,地理学自动提取知识的任务更为凸显。但是在寻求地理规律的过程中,需要处理一般性和地理异质性之间的权衡,其核心可以表述为人工智能学习过程中的基础问题:泛化及可解释性问题。因此,二者存在内在的逻辑一致性,积极引入人工智能技术有助于强化地理学的学科基础。本文通过实例给出了人工智能用于地理规律发现的一个简单框架,指出了未来地理空间人工智能发展的方向,以及地理信息科学在机制、模型、方法及应用方面潜在的新任务。

关键词: 地理异质性, 地理规律性, 地理空间人工智能, 地理信息科学

Abstract: Recently, the rapid development of artificial intelligence has reshaped the research paradigm of many disciplines. Regarding geography, this trend is no exception. From the perspective of knowledge discovery, geographical research has two major tasks: revealing big unknowns and discovering laws. Artificial intelligence helps geographers discover knowledge or even automatically extract knowledge from these two aspects. Compared with other geoscience disciplines, geography focuses more on discovering "universal" laws. However, in the process of seeking geographical laws, we need to deal with the trade-off between universality and geographical heterogeneity, the core in which can be expressed as the theoretical foundation in artificial intelligence learning: generalization and interpretability. Therefore, there is an inherent logical consistency between the two disciplines. Introducing artificial intelligence to geographical studies will help to strengthen the disciplinary basis. This paper gives an example framework for artificial intelligence to discover geographical laws, and points out the future directions of geospatial artificial intelligence and geographic information science.

Key words: geographical heterogeneity, geographical law, geospatial artificial intelligence, geographic information science

中图分类号: