
测绘学报 ›› 2017, Vol. 46 ›› Issue (6): 770-779.doi: 10.11947/j.AGCS.2017.20160614
唐炉亮1, 牛乐1, 杨雪1, 张霞2, 李清泉1,2, 萧世伦1,3
收稿日期:2016-12-02
修回日期:2017-04-27
出版日期:2017-06-20
发布日期:2017-06-28
通讯作者:
牛乐
E-mail:niule_gis@163.com
作者简介:唐炉亮(1973—),男,博士,教授,研究方向为GIS-T、时空GIS、轨迹大数据挖掘等。E-mail:tll@whu.edu.cn
基金资助:TANG Luliang1, NIU Le1, YANG Xue1, ZHANG Xia2, LI Qingquan1,2, XIAO Shilun1,3
Received:2016-12-02
Revised:2017-04-27
Online:2017-06-20
Published:2017-06-28
Supported by:摘要: 交叉口是城市交通路网生成、更新的重要组成部分。本文基于车辆时空轨迹大数据,提出了一种城市交叉口自动识别方法。该方法首先通过轨迹跟踪识别轨迹数据中包含的车辆转向点对;然后基于距离和角度的生长聚类方法进行转向点对的空间聚类,并采用基于局部点连通性的聚类方法识别交叉口;最后利用交叉口范围圆和转向点对提取城市各级别路网下的交叉口结构。以武汉市出租车轨迹大数据为例,对武汉市城区内189个交叉口进行了探测。试验结果表明,本文所提方法可以准确地从轨迹大数据中识别出城市交叉口及其结构。
中图分类号:
唐炉亮, 牛乐, 杨雪, 张霞, 李清泉, 萧世伦. 利用轨迹大数据进行城市道路交叉口识别及结构提取[J]. 测绘学报, 2017, 46(6): 770-779.
TANG Luliang, NIU Le, YANG Xue, ZHANG Xia, LI Qingquan, XIAO Shilun. Urban Intersection Recognition and Construction Based on Big Trace Data[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(6): 770-779.
| [1] HILLEL A B, LERNER R, LEVI D, et al. Recent Progress in Road and Lane Detection: A Survey[J]. Machine Vision and Applications, 2014, 25(3): 727-745. [2] 曹云刚, 王志盼, 慎利, 等. 像元与对象特征融合的高分辨率遥感影像道路中心线提取[J]. 测绘学报, 2016, 45(10): 1231-1240, 1249. DOI: 10.11947/j.AGCS.2016.20160158. CAO Yungang, WANG Zhipan, SHEN Li, et al. Fusion of Pixel-based and Object-based Features for Road Centerline Extraction from High-resolution Satellite Imagery[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(10): 1231-1240, 1249. DOI: 10.11947/j.AGCS.2016.20160158. [3] 郑年波, 陆锋, 李清泉. 面向导航的动态多尺度路网数据模型[J]. 测绘学报, 2010, 39(4): 428-434. ZHENG Nianbo, LU Feng, LI Qingquan. Dynamic Multi-scale Road Network Data Model for Navigation[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(4): 428-434. [4] 黄敏, 饶明雷, 李敏. 面向仿真的车道级基础路网模型及其应用[J]. 系统仿真学报, 2014, 26(3): 657-661, 681. HUANG Min, RAO Minglei, LI Min. Research of Lane-level Basic Road Network Model for Simulation and its Application[J]. Journal of System Simulation, 2014, 26(3): 657-661, 681. [5] 朱庆, 李渊. 面向实际车道的3维道路网络模型[J]. 测绘学报, 2007, 36(4): 414-420. DOI: 10.3321/j.issn:1001-1595.2007.04.010. ZHU Qing, LI Yuan. Lane-oriented 3D Road Network Model[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(4): 414-420. DOI: 10.3321/j.issn:1001-1595.2007.04.010. [6] UDUWARAGODA E R I A C, PERERA A S, DIAS S A D. Generating Lane Level Road Data from Vehicle Trajectories Using Kernel Density Estimation[C]//Proceedings of 2013 the 16th International IEEE Conference on Intelligent Transportation Systems. The Hague, Netherlands: IEEE, 2013: 384-391. [7] 李晓峰, 张树清, 韩富伟, 等. 基于多重信息融合的高分辨率遥感影像道路信息提取[J]. 测绘学报, 2008, 37(2): 178-184. DOI: 10.3321/j.issn:1001-1595.2008.02.009. LI Xiaofeng, ZHANG Shuqing, HAN Fuwei, et al. Road Extraction from High Resolution Remote Sensing Images Based on Multiple Information Fusion[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(2): 178-184. DOI: 10.3321/j.issn:1001-1595.2008.02.009. [8] 蔡红玥, 姚国清. 高分辨率遥感图像道路交叉口自动提取[J]. 国土资源遥感, 2016, 28(1): 63-71. CAI Hongyue, YAO Guoqing. Auto-extraction of Road Intersection from High Resolution Remote Sensing Image[J]. Remote Sensing for Land & Resources, 2016, 28(1): 63-71. [9] 李怡静, 胡翔云, 张剑清, 等. 影像与LiDAR数据信息融合复杂场景下的道路自动提取[J]. 测绘学报, 2012, 41(6): 870-876. LI Yijing, HU Xiangyun, ZHANG Jianqing, et al. Automatic Road Extraction in Complex Scenes Based on Information Fusion from LiDAR and Remote Sensing Imagery[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(6): 870-876. [10] ZHU Quanwen, CHEN Long, LI Qingquan, et al. 3D LIDAR Point Cloud based Intersection Recognition for Autonomous Driving[C]//Proceedings of IEEE Intelligent Vehicles Symposium. Alcala de Henares, Spain: IEEE, 2012: 456-461. [11] 贺勇, 路昊, 王春香, 等. 基于多传感器的车道级高精细地图制作方法[J]. 长安大学学报(自然科学版), 2015, 35(S1): 274-278. HE Yong, LU Hao, WANG Chunxiang, et al. Generation of Precise Lane-level Maps Based on Multi-sensors[J]. Journal of Chang'an University (Natural Science Edition), 2015, 35(S1): 274-278. [12] AYCARD O, BAIG Q, BOTA S, et al. Intersection Safety Using Lidar and Stereo Vision Sensors[C]//Proceedings of 2011 IEEE Intelligent Vehicles Symposium. Baden: IEEE, 2011: 863-869. [13] TANG Luliang, YANG Xue, KAN Zihan, et al. Lane-level Road Information Mining from Vehicle GPS Trajectories Based on Naïve Bayesian Classification[J]. ISPRS International Journal of Geo-Information, 2015, 4(4): 2660-2680. [14] CAO Lili, KRUMM J. From GPS Traces to a Routable Road Map[C]//Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Seattle, Washington: ACM, 2009. [15] CHEN Yihua, KRUMM J. Probabilistic Modeling of Traffic Lanes from GPS Traces[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. San Jose: ACM, 2010. [16] 王振华, 胡翔云, 单杰. 众源GPS浮动车数据中城市道路中心线分级提取的栅格化方法[J]. 测绘通报, 2015(8): 22-24, 34. DOI: 10.13474/j.cnki.11-2246.2015.0236. WANG Zhenhua, HU Xiangyun, SHAN Jie. A Rasterization-based Hierarchical Approach for Urban Road Centerline Extraction from crowdsourcing GPS Floating Car Data[J]. Bulletin of Surveying and Mapping, 2015(8): 22-24, 34. DOI: 10.13474/j.cnki.11-2246.2015.0236. [17] BETAILLE D, TOLEDO-MOREO R. Creating Enhanced Maps for Lane-level Vehicle Navigation[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(4): 786-798. [18] 庄立坚, 何兆成, 杨文臣, 等. 基于大规模浮动车数据的交叉口转向规则自动提取算法[J]. 武汉理工大学学报(交通科学与工程版), 2013, 37(5): 1084-1088. ZHUANG Lijian, HE Zhaocheng, YANG Wenchen, et al. A Large-scale Floating Car Data-based Algorithm of Turning Rule Extraction at Intersections[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2013, 37(5): 1084-1088. [19] 谭祥爽, 王晶, 宋现锋, 等. 基于浮动车数据的路口探测方法[J]. 地理与地理信息科学, 2015, 31(5): 34-38, 封3. TAN Xiangshuang, WANG Jing, SONG Xianfeng, et al. Detection of Road Intersections Using Floating Car Data[J]. Geography and Geo-Information Science, 2015, 31(5): 34-38, 封3. [20] CHIANG Y Y, KNOBLOCK C A. Automatic Extraction of Road Intersection Position, Connectivity, and Orientations from Raster Maps[C]//Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Irvine: ACM, 2008: 1-10. [21] FATHI A, KRUMM J. Detecting Road Intersections from GPS Traces[M]//FABRIKANT S I, REICHENBACHER T, VAN KREVELD M, et al. Geographic Information Science. GIScience 2010. Lecture Notes in Computer Science. Heidelberg: Springer, 2010, 6292: 56-69. [22] LIU Jiang, CAI Baigen, WANG Yunpeng, et al. Generating Enhanced Intersection Maps for Lane Level Vehicle Positioning based Applications[J]. Procedia-social and Behavioral Sciences, 2013, 96: 2395-2403. [23] WANG Jing, RUI Xiaoping, SONG Xianfeng, et al. A Novel Approach for Generating Routable Road Maps from Vehicle GPS Traces[J]. International Journal of Geographical Information Science, 2015, 29(1): 69-91. [24] LI Pengfei, SOULEYRETTE R R. A Generic Approach to Estimate Freeway Traffic Time Using Vehicle ID-matching Technologies[J]. Computer-Aided Civil and Infrastructure Engineering, 2016, 31(5): 351-365. [25] TANG Luliang, YANG Xue, DONG Zhen, et al. CLRIC: Collecting Lane-based Road Information via Crowdsourcing[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(9): 2552-2562. [26] 唐炉亮, 杨雪, 阚子涵, 等. 一种基于朴素贝叶斯分类的车道数量探测[J]. 中国公路学报, 2016, 29(3): 116-123. TANG Luliang, YANG Xue, KAN Zihan, et al. Traffic Lane Numbers Detection Based on the Naive Bayesian Classification[J]. China Journal of Highway and Transport, 2016, 29(3): 116-123. |
| [1] | 邱越, 武芳, 翟仁健, 钱海忠, 黄哲琨, 李博. 面向匹配优化的多源建筑物实体级保形空间对齐模型[J]. 测绘学报, 2025, 54(12): 2262-2275. |
| [2] | 张锦彬, 朱军, 党沛, 周宇轩, 杨博文. 现场直播式地理信息服务:基于VR全景的现场实况远程临浸感知[J]. 测绘学报, 2025, 54(12): 2276-2286. |
| [3] | 张岩. 基于街景影像的城市功能区多尺度时空感知方法[J]. 测绘学报, 2025, 54(12): 2289-2289. |
| [4] | 曾进. 城市社会空间的空间大数据量化表达与分析方法:以深圳市为例[J]. 测绘学报, 2025, 54(12): 2292-2292. |
| [5] | 刘少俊. 基于手机信令数据的城市人群活动时空格局分析研究[J]. 测绘学报, 2025, 54(12): 2295-2295. |
| [6] | 吴超, 梁咏翔, 岳瀚, 崔远政, 黄波. 面向计数数据的时空地理加权泊松回归模型[J]. 测绘学报, 2025, 54(11): 2026-2039. |
| [7] | 王小龙, 王卓, 李精忠, 闫浩文. 微地图制图的空间方向关系转译法[J]. 测绘学报, 2025, 54(11): 2040-2051. |
| [8] | 胡鑫, 杨学习, 江一凡, 王宪彬, 丁晨, 谢顾然, 邓敏. 基于多智能体层次化协同的地理事件抽取与时空解析[J]. 测绘学报, 2025, 54(11): 2052-2067. |
| [9] | 李俊, 李朝奎, 黄磊, 冯媛媛. 高速公路广告牌巡检目标跟踪的改进ByteTrack算法[J]. 测绘学报, 2025, 54(11): 2068-2080. |
| [10] | 叶欣宇, 徐胜华, 刘纪平, 陈虹宇, 王琢璐, 李维炼. 基于时空因果推断的下一个兴趣点推荐[J]. 测绘学报, 2025, 54(11): 2081-2096. |
| [11] | 赵学胜, 谢文澜, 孙文彬. 空间格网互操作的研究进展与关键问题[J]. 测绘学报, 2025, 54(10): 1727-1740. |
| [12] | 高凡, 路威, 甘麟露, 章繁, 荣凤娟, 汤士涵. 智能驱动的并行地理计算引擎框架[J]. 测绘学报, 2025, 54(10): 1877-1892. |
| [13] | 吴浩宇, 朱庆, 丁雨淋, 鲍榴, 刘利. 数据模型知识协同驱动的隧道围岩高精度数字孪生建模方法[J]. 测绘学报, 2025, 54(10): 1893-1906. |
| [14] | 郝彧露. 时空数据驱动的城市区域火灾风险评估预测模型及应用[J]. 测绘学报, 2025, 54(10): 1910-1910. |
| [15] | 张付兵, 孙群, 徐青, 马京振, 黄文君, 陈若虚. 随机森林和图神经网络支持下的河系自动分级与选取方法[J]. 测绘学报, 2025, 54(9): 1697-1711. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||