测绘学报 ›› 2019, Vol. 48 ›› Issue (12): 1575-1585.doi: 10.11947/j.AGCS.2019.20190465
杨必胜1,2, 董震1,2
收稿日期:
2019-11-07
修回日期:
2019-11-19
发布日期:
2019-12-24
作者简介:
杨必胜(1974-),男,国家杰出青年科学基金获得者,长江学者特聘教授,博士生导师,主要从事无人机摄影测量与三维重建、点云智能处理、空间智能、GIS应用等方面的研究工作。E-mail:bshyang@whu.edu.cn
基金资助:
YANG Bisheng1,2, DONG Zhen1,2
Received:
2019-11-07
Revised:
2019-11-19
Published:
2019-12-24
Supported by:
摘要: 随着以激光扫描、倾斜摄影为主的各种现实采集(reality capture)装备的快速发展,点云已成为继矢量地图和影像数据之后的第三类重要的时空数据源,并在地球科学、空间认知、智慧城市等科学研究和工程建设中发挥越来越重要的作用。如何从点云大数据中快速、准确获取精准有效的三维地理信息成为测绘地理信息领域的科学前沿和地学应用研究的迫切需求,也是三维地理信息获取与建模面临的重大难题。点云智能应运而生,并成为突破上述难题的科学途径。本文围绕点云智能中的三个重要方向:点云大数据处理的理论方法,点云大数据智能处理关键技术和重大工程应用,阐述点云采集装备、智能化处理,以及科学研究与工程应用的最新进展,最后对点云智能的重要发展方向趋势予以展望,希望为点云研究相关人员提供科学参考。
中图分类号:
杨必胜, 董震. 点云智能研究进展与趋势[J]. 测绘学报, 2019, 48(12): 1575-1585.
YANG Bisheng, DONG Zhen. Progress and perspective of point cloud intelligence[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1575-1585.
[1] 李德仁, 马军, 邵振峰. 论地理国情普查和监测的创新[J]. 武汉大学学报(信息科学版), 2018, 43(1):1-9. LI Deren, MA Jun, SHAO Zhenfeng. Innovation in the census and monitoring of geographical national conditions[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1):1-9. [2] 李德仁. 从测绘学到地球空间信息智能服务科学[J]. 测绘学报, 2017, 46(10):1207-1212. DOI:10.11947/j.AGCS.2017.20170263. LI Deren. From geomatics to geospatial intelligent service science[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1207-1212. DOI:10.11947/j.AGCS.2017.20170263. [3] 唐新明, 陈继溢, 李国元, 等. 资源三号02星激光测高误差分析与指向角粗标定[J]. 武汉大学学报(信息科学版), 2018, 43(11):1611-1619. TANG Xinming, CHEN Jiyi, LI Guoyuan, et al. Error analysis and preliminary pointing angle calibration of laser altimeter on Ziyuan-302 satellite[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11):1611-1619. [4] VIRTANEN J P, KUKKO A, KAARTINEN H, et al. Nationwide point cloud-the future topographic core data[J]. ISPRS International Journal of Geo-Information, 2017, 6(8):243. [5] 李国元, 黄佳鹏, 唐新明, 等. 距离门宽度对单光子激光测高卫星探测概率及测距精度的影响[J]. 测绘学报, 2018, 47(11):1487-1494. DOI:10.11947/j.AGCS.2018.20170469. LI Guoyuan, HUANG Jiapeng, TANG Xinming, et al. Influence of range gate width on detection probability and ranging accuracy of single photon laser altimetry satellite[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(11):1487-1494. DOI:10.11947/j.AGCS.2018.20170469. [6] 蒋赫敏, 钟若飞, 谢东海. 智能手机移动测量方法的设计与实现[J]. 测绘通报, 2019(6):71-76. DOI:10.13474/j.cnki.11-2246.2019.0187. JIANG Hemin, ZHONG Ruofei, XIE Donghai. Design and implementation of mobile measurement method for smartphone[J]. Bulletin of Surveying and Mapping, 2019(6):71-76. DOI:10.13474/j.cnki.11-2246.2019.0187. [7] LI Jianping, YANG Bisheng, CHEN Chi, et al. NRLI-UAV:non-rigid registration of sequential raw laser scans and images for low-cost UAV LiDAR point cloud quality improvement[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 158:123-145. [8] KELLY A, STENTZ A, AMIDI O, et al. Toward reliable off road autonomous vehicles operating in challenging environments[J]. International Journal of Robotics Research, 2006, 25(5-6):449-483. [9] 杨必胜, 梁福逊, 黄荣刚. 三维激光扫描点云数据处理研究进展、挑战与趋势[J]. 测绘学报, 2017, 46(10):1509-1516. DOI:10.11947/j.AGCS.2017.20170351. YANG Bisheng, LIANG Fuxun, HUANG Ronggang. Progress, challenges and perspectives of 3D LiDAR point cloud processing[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1509-1516. DOI:10.11947/j.AGCS.2017.20170351. [10] HABIB A, KERSTING A P, BANG K I, et al. Alternative methodologies for the internal quality control of parallel LiDAR strips[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1):221-236. [11] YAN Li, TAN Junxiang, LIU Hua, et al. Automatic non-rigid registration of multi-strip point clouds from mobile laser scanning systems[J]. International Journal of Remote Sensing, 2018, 39(6):1713-1728. [12] 张祖勋, 陶鹏杰. 谈大数据时代的"云控制"摄影测量[J]. 测绘学报, 2017, 46(10):1238-1248. DOI:10.11947/j.AGCS.2017.20170337. ZHANG Zuxun, TAO Pengjie. An overview on "cloud control" photogrammetry in big data era[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1238-1248. DOI:10.11947/j.AGCS.2017.20170337. [13] 卢秀山, 李清泉, 冯文灏, 等. 车载式城市信息采集与三维建模系统[J]. 武汉大学学报(工学版), 2003, 36(3):76-80. LU Xiushan, LI Qingquan, FENG Wenhao, et al. Vehicle-borne urban information acquisition and 3D modeling system[J]. Engineering Journal of Wuhan University, 2003, 36(3):76-80. [14] LICHTI D D, GLENNIE C L, AL-DURGHAM K, et al. Explanation for the seam line discontinuity in terrestrial laser scanner point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154:59-69. [15] CHENG Liang, CHEN Song, LIU Xiaoqiang, et al. Registration of laser scanning point clouds:a review[J]. Sensors, 2018, 18(5):1641. [16] 谭凯, 程效军, 张吉星. TLS强度数据的入射角及距离效应改正方法[J]. 武汉大学学报(信息科学版), 2017, 42(2):223-228. TAN Kai, CHENG Xiaojun, ZHANG Jixing. Correction for incidence angle and distance effects on TLS intensity data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2):223-228. [17] KAASALAINEN S, HYYPPÄ H, KUKKO A, et al. Radiometric calibration of LiDAR intensity with commercially available reference targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2):588-598. [18] KASHANI A G, OLSEN M J, PARRISH C E, et al. A review of LiDAR radiometric processing:from Ad Hoc intensity correction to rigorous radiometric calibration[J]. Sensors, 2015, 15(11):28099-28128. [19] 陈驰, 杨必胜, 彭向阳. 低空UAV激光点云和序列影像的自动配准方法[J]. 测绘学报, 2015, 44(5):518-525. DOI:10.11947/j.AGCS.2015.20130558. CHEN Chi, YANG Bisheng, PENG Xiangyang. Automatic registration of low altitude UAV sequent images and laser point clouds[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(5):518-525. DOI:10.11947/j.AGCS.2015.20130558. [20] 陈驰, 杨必胜, 田茂, 等. 车载MMS激光点云与序列全景影像自动配准方法[J]. 测绘学报, 2018, 47(2):215-224. DOI:10.11947/j.AGCS.2018.20170520. CHEN Chi, YANG Bisheng, TIAN Mao, et al. Automatic registration of vehicle-borne mobile mapping laser point cloud and sequent panoramas[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2):215-224. DOI:10.11947/j.AGCS.2018.20170520. [21] YANG Bisheng, CHEN Chi. Automatic registration of UAV-borne sequent images and LiDAR data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101:262-274. [22] LI Jianping, YANG Bisheng, CHEN Chi, et al. Automatic registration of panoramic image sequence and mobile laser scanning data using semantic features[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 136:41-57. [23] ZANG Yufu, YANG Bisheng, LI Jianping, et al. An accurate TLS and UAV image point clouds registration method for deformation detection of chaotic hillside areas[J]. Remote Sensing, 2019, 11(6):647. [24] WEINMANN M, URBAN S, HINZ S, et al. Distinctive 2D and 3D features for automated large-scale scene analysis in urban areas[J]. Computers & Graphics, 2015, 49:47-57. [25] THEILER P W, WEGNER J D, SCHINDLER K. Keypoint-based 4-points congruent sets-automated marker-less registration of laser scans[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 96:149-163. [26] WEBER T, HÄNSCH R, HELLWICH O. Automatic registration of unordered point clouds acquired by Kinect sensors using an overlap heuristic[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 102:96-109. [27] GUO Yulan, SOHEL F, BENNAMOUN M, et al. Rotational projection statistics for 3D local surface description and object recognition[J]. International Journal of Computer Vision, 2013, 105(1):63-86. [28] HACKEL T, WEGNER J D, SCHINDLER K. Fast semantic segmentation of 3D point clouds with strongly varying density[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016(III-3):177-184. [29] MIAN A S, BENNAMOUN M, OWENS R A. A novel representation and feature matching algorithm for automatic pairwise registration of range images[J]. International Journal of Computer Vision, 2006, 66(1):19-40. [30] SAVELONAS M A, PRATIKAKIS I, SFIKAS K. Fisher encoding of differential fast point feature histograms for partial 3D object retrieval[J]. Pattern Recognition, 2016, 55:114-124. [31] YANG Bisheng, DONG Zhen. A shape-based segmentation method for mobile laser scanning point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 81:19-30. [32] YANG Bisheng, DONG Zhen, ZHAO Gang, et al. Hierarchical extraction of urban objects from mobile laser scanning data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 99:45-57. [33] LIU Chun, SHI Beiqi, YANG Xuan, et al. Automatic buildings extraction from LiDAR data in urban area by neural oscillator network of visual cortex[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(4):2008-2019. [34] DONG Hang, BARFOOT T D. Lighting-invariant visual odometry using lidar intensity imagery and pose interpolation[M].YOSHIDA K, TADOKORO S. Field and Service Robotics:Results of the 8th International Conference. Berlin, Heidelberg:Springer, 2014:327-342. [35] TONG C H, BARFOOT T D. Gaussian process gauss-newton for 3D laser-based visual odometry[C]//Proceedings of 2013 IEEE International Conference on Robotics and Automation. Karlsruhe. Germany:IEEE, 2013:5204-5211. [36] ZHANG Ji, SINGH S. LOAM:LiDAR odometry and mapping in real-time[R]. Rittsburgh:Carnegie Mellon University, 2014. [37] JOHNSON A E, HEBERT M. Using spin images for efficient object recognition in cluttered 3D scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(5):433-449. [38] LALONDE J F, VANDAPEL N, HUBER D F, et al. Natural terrain classification using three-dimensional LiDAR data for ground robot mobility[J]. Journal of Field Robotics, 2006, 23(10):839-861. [39] RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration[C]//Proceedings of 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan:IEEE, 2009:3212-3217. [40] DONG Zhen, YANG Bisheng, LIU Yuan, et al. A novel binary shape context for 3D local surface description[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130:431-452. [41] 张继贤, 林祥国, 梁欣廉. 点云信息提取研究进展和展望[J]. 测绘学报, 2017, 46(10):1460-1469. DOI:10.11947/j.AGCS.2017.20170345. ZHANG Jixian, LIN Xiangguo, LIANG Xinlian. Advances and prospects of information extraction from point clouds[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1460-1469. DOI:10.11947/j.AGCS.2017.20170345. [42] ZHANG Liqiang, ZHANG Liang. Deep learning-based classification and reconstruction of residential scenes from large-scale point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4):1887-1897. [43] MATURANA D, SCHERER S. VoxNet:a 3D convolutional neural network for real-time object recognition[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany:IEEE, 2015:922-928. [44] SU Hang, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile:[s.n.], 2015:945-953. [45] QI C R, SU Hao, MO Kaichun, et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI:IEEE, 2017:77-85. [46] YANG Bisheng, DONG Zhen, LIU Yuan, et al. Computing multiple aggregation levels and contextual features for road facilities recognition using mobile laser scanning data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 126:180-194. [47] YANG Bisheng, DONG Zhen, LIANG Fuxun, et al. Automatic registration of large-scale urban scene point clouds based on semantic feature points[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 113:43-58. [48] FANG Lina, YANG Bisheng, CHEN Chongcheng, et al. Extraction 3D road boundaries from mobile laser scanning point clouds[C]//Proceedings of the 2nd IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services. Fuzhou:IEEE, 2015:162-165. [49] YANG Bisheng, LIU Yuan, DONG Zhen, et al. 3D local feature BKD to extract road information from mobile laser scanning point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130:329-343. [50] YANG Bisheng, XU Wenxue, YAO Wei. Extracting buildings from airborne laser scanning point clouds using a marked point process[J]. GIScience & Remote Sensing, 2014, 51(5):555-574. [51] GUO Yulan, SOHEL F, BENNAMOUN M, et al. A novel local surface feature for 3D object recognition under clutter and occlusion[J]. Information Sciences, 2015, 293:196-213. [52] GUO Yulan, BENNAMOUN M, SOHEL F, et al. A comprehensive performance evaluation of 3D local feature descriptors[J]. International Journal of Computer Vision, 2016, 116(1):66-89. [53] HUANG Rong, HONG Danfeng, XU Yusheng, et al. Multi-scale local context embedding for LiDAR point cloud classification[J]. IEEE Geoscience and Remote Sensing Letters, 2019, DOI:10.1109/LGRS.2019.2927779. [54] ZHANG Wuming, QI Jianbo, WAN Peng, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6):501. [55] KANG Zhizhong, YANG Juntao. A probabilistic graphical model for the classification of mobile LiDAR point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 143:108-123. [56] QI C R, YI L, SU Hao, et al. PointNet++:deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of Advances in Neural Information Processing Systems.[S.l.]:NIPS, 2017. 5099-5108. [57] WEN Chenglu, SUN Xiaotian, LI J, et al. A deep learning framework for road marking extraction, classification and completion from mobile laser scanning point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 147:178-192. [58] XIONG B, OUDE ELBERINK S, VOSSELMAN G. A graph edit dictionary for correcting errors in roof topology graphs reconstructed from point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93:227-242. [59] JARZABEK-RYCHARD M, BORKOWSKI A. 3D building reconstruction from ALS data using unambiguous decomposition into elementary structures[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 118:1-12. [60] XIA Shaobo, WANG Ruisheng. Extraction of residential building instances in suburban areas from mobile LiDAR data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144:453-468. [61] ZHANG Liqiang, LI Zhuqiang, LI Anjian, et al. Large-scale urban point cloud labeling and reconstruction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 138:86-100. [62] YANG Bisheng, HUANG Ronggang, LI Jianping, et al. Automated reconstruction of building LoDs from airborne LiDAR point clouds using an improved morphological scale space[J]. Remote Sensing, 2017, 9(1):14. [63] OESAU S, LAFARGE F, ALLIEZ P. Indoor scene reconstruction using feature sensitive primitive extraction and graph-cut[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 90:68-82. [64] MURA C, MATTAUSCH O, PAJAROLA R. Piecewise-planar reconstruction of multi-room interiors with arbitrary wall arrangements[J]. Computer Graphics Forum, 2016, 35(7):179-188. [65] CUI Yang, LI Qingquan, DONG Zhen. Structural 3D reconstruction of indoor space for 5G signal simulation with mobile laser scanning point clouds[J]. Remote Sensing, 2019, 11(19):2262. [66] XIAO Jianxiong, FURUKAWA Y. Reconstructing the world's museums[J]. International Journal of Computer Vision, 2014, 110(3):243-258. [67] SU Hang, JAMPANI V, SUN Deqing, et al. SPLATNet:sparse lattice networks for point cloud processing[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT:IEEE, 2018:2530-2539. [68] YU Lequan, LI Xianzhi, FU C W, et al. PU-Net:point cloud upsampling network[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT:IEEE, 2018:2790-2799. [69] SILBERMAN N, HOIEM D, KOHLI P, et al. Indoor segmentation and support inference from RGBD images[C]//Proceedings of the 12th European Conference on Computer Vision. Florence, Italy:Springer, 2012:746-760. [70] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI:IEEE, 2012:3354-3361. [71] DAI A, CHANG A X, SAVVA M, et al. ScanNet:richly-annotated 3D reconstructions of indoor scenes[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI:IEEE, 2017:2432-2443. [72] HACKEL T, SAVINOV N, LADICKY L, et al. SEMANTIC3D. NET:a new large-scale point cloud classification benchmark[C]//Proceedings of ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Hannover, Germany:[s.n.], 2017:91-98. [73] EITEL J U H, HÖFLE B, VIERLING L A, et al. Beyond 3-D:the new spectrum of lidar applications for earth and ecological sciences[J]. Remote Sensing of Environment, 2016, 186:372-392. [74] HUANG Ronggang, JIANG Liming, WANG Hansheng, et al. A bidirectional analysis method for extracting glacier crevasses from airborne LiDAR point clouds[J]. Remote Sensing, 2019, 11(20):2373. [75] NIE Sheng, WANG Cheng, XI Xiaohuan, et al. Assessing the impacts of various factors on treetop detection using LiDAR-derived canopy height models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, DOI:10.1109/TGRS.2019.2931408. [76] HU Pingbo, YANG Bisheng, DONG Zhen, et al. Towards reconstructing 3D buildings from ALS data based on gestalt laws[J]. Remote Sensing, 2018, 10(7):1127. [77] YU Bailang, LIU Hongxing, WU Jianping, et al. Automated derivation of urban building density information using airborne LiDAR data and object-based method[J]. Landscape and Urban Planning, 2010, 98(3-4):210-219. [78] MAO Qingzhou, CUI Hao, HU Qingwu, et al. A rigorous fastener inspection approach for high-speed railway from structured light sensors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 143:249-267. [79] ZONG Z, CHEN C, MI X, et al. A deep learning approach for urban underground objects detection from vehicle-borne ground penetrating radar data in real-time[C]//Proceedings of International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Munich, Germany:ISPRS, 2019:293-299. [80] 刘先林. 为社会进步服务的测绘高新技术[J]. 测绘科学, 2019, 44(6):1-15. LIU Xianlin. High technologies of surveying and mapping for social progress[J]. Science of Surveying and Mapping, 2019, 44(6):1-15. [81] CHEN Chi, YANG Bisheng, SONG Shuang, et al. Automatic clearance anomaly detection for transmission line corridors utilizing UAV-borne LiDAR data[J]. Remote Sensing, 2018, 10(4):613. [82] WU Hangbin, YAO Lianbi, XU Zeran, et al. Road pothole extraction and safety evaluation by integration of point cloud and images derived from mobile mapping sensors[J]. Advanced Engineering Informatics, 2019, 42:100936. [83] SÁNCHEZ RODRÍGUEZ A, RIVEIRO RODRÍGUEZ B, SOILÁN RODRÍGUEZ M, et al. Laser scanning and its applications to damage detection and monitoring in masonry structures[M].GHIASSI B, LOURENÇO P B. Long-term Performance and Durability of Masonry Structures. Amsterdam:Elsevier, 2019:265-285. [84] PRADHAN B, IBRAHIM SAMEEN M. Laser scanning systems in highway and safety assessment:analysis of highway geometry and safety using LiDAR[M]. Cham:Springer, 2020. [85] YANG Bisheng, FANG Lina, LI J. Semi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 79:80-93. [86] 刘经南, 詹骄, 郭迟, 等. 智能高精地图数据逻辑结构与关键技术[J]. 测绘学报, 2019, 48(8):939-953. DOI:10.11947/j.AGCS.2019.20190125. LIU Jingnan, ZHAN Jiao, GUO Chi, et al. Data logic structure and key technologies on intelligent high-precision map[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8):939-953. DOI:10.11947/j.AGCS.2019.20190125. [87] KERSTEN T P, HINRICHSEN N, LINDSTAEDT M, et al. Architectural historical 4D documentation of the old-segeberg town house by photogrammetry, terrestrial laser scanning and historical analysis[C]//Proceedings of the 5th Euro-Mediterranean Conference. Limassol, Cyprus:Springer, 2014:35-47. [88] ORENI D, BRUMANA R, BANFI F, et al. Beyond crude 3D models:from point clouds to historical building information modeling via NURBS[C]//Proceedings of the 5th Euro-Mediterranean Conference. Limassol, Cyprus:Springer, 2014:166-175. [89] HUANG Qixing, FLÖRY S, GELFAND N, et al. Reassembling fractured objects by geometric matching[J]. ACM Transactions on Graphics, 2006, 25(3):569-578. [90] ZHANG Kang, YU Wuyi, MANHEIN M, et al. 3D fragment reassembly using integrated template guidance and fracture-region matching[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile:IEEE, 2015:2138-2146. [91] 张帆, 黄先锋, 方伟, 等. 基于兴趣边缘优化的壁画影像与激光扫描数据非刚性配准[J]. 中国科学:信息科学, 2012, 42(4):493-503. ZHANG Fan, HUANG Xianfeng, FANG Wei, et al. Non-rigid registration of mural images and laser scanning data based on the optimization of the edges of interest[J]. Science China Information Sciences, 2012, 42(4):493-503. [92] 许丽鹏, 黄先锋, 吴健, 等. 基于激光点云的敦煌洞窟空间信息重建[J]. 敦煌研究, 2019(4):121-127. XU Lipeng, HUANG Xianfeng, WU Jian, et al. Reconstructing the spatial information of Dunhuang caves based on laser point cloud analysis[J]. Dunhuang Research, 2019(4):121-127. [93] YANG Bisheng, ZANG Yufu. Automated registration of dense terrestrial laser-scanning point clouds using curves[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 95:109-121. [94] PAN Ning, HOU Miaole, LÜ Shuqiang, et al. Extracting faded mural patterns based on the combination of spatial-spectral feature of hyperspectral image[J]. Journal of Cultural Heritage, 2017, 27:80-87. [95] HOU Miaole, LI Shukun, JIANG Lili, et al. A new method of gold foil damage detection in stone carving relics based on multi-temporal 3D LiDAR point clouds[J]. ISPRS International Journal of Geo-Information, 2016, 5(5):60. [96] XIE Linfu, ZHU Qing, HU Han, Wu Bo et al. Hierarchical regularization of building boundaries in noisy aerial laser scanning and photogrammetric point clouds[J]. Remote Sensing, 2018, 10(12):1996. |
[1] | 张良培, 何江, 杨倩倩, 肖屹, 袁强强. 数据驱动的多源遥感信息融合研究进展[J]. 测绘学报, 2022, 51(7): 1317-1337. |
[2] | 程涛, 张洋, James Haworth. 基于网络和图的时空智能——概念、方法和应用[J]. 测绘学报, 2022, 51(7): 1629-1639. |
[3] | 龚健雅, 宦麟茜, 郑先伟. 影像解译中的深度学习可解释性分析方法[J]. 测绘学报, 2022, 51(6): 873-884. |
[4] | 张勤, 赵超英, 陈雪蓉. 多源遥感地质灾害早期识别技术进展与发展趋势[J]. 测绘学报, 2022, 51(6): 885-896. |
[5] | 龚健雅, 张觅, 胡翔云, 张展, 李彦胜, 姜良存. 智能遥感深度学习框架与模型设计[J]. 测绘学报, 2022, 51(4): 475-487. |
[6] | 毛文婧, 王卫林, 焦利民, 刘安宝. 基于深度学习的中国连续空间覆盖PM2.5浓度预报[J]. 测绘学报, 2022, 51(3): 361-372. |
[7] | 金飞, 官恺, 刘智, 韩佳容, 芮杰, 李庆高. 无监督密集匹配特征提取网络性能分析[J]. 测绘学报, 2022, 51(3): 426-436. |
[8] | 何直蒙, 丁海勇, 安炳琪. 高分辨率遥感影像建筑物提取的空洞卷积E-Unet算法[J]. 测绘学报, 2022, 51(3): 457-467. |
[9] | 张永生, 张振超, 童晓冲, 纪松, 于英, 赖广陵. 地理空间智能研究进展和面临的若干挑战[J]. 测绘学报, 2021, 50(9): 1137-1146. |
[10] | 艾廷华. 深度学习赋能地图制图的若干思考[J]. 测绘学报, 2021, 50(9): 1170-1182. |
[11] | 龚健雅, 许越, 胡翔云, 姜良存, 张觅. 遥感影像智能解译样本库现状与研究[J]. 测绘学报, 2021, 50(8): 1013-1022. |
[12] | 杨必胜, 韩旭, 董震. 适用于城市场景大规模点云语义标识的深度学习网络[J]. 测绘学报, 2021, 50(8): 1059-1067. |
[13] | 陶超, 阴紫薇, 朱庆, 李海峰. 遥感影像智能解译:从监督学习到自监督学习[J]. 测绘学报, 2021, 50(8): 1122-1134. |
[14] | 晏雄锋, 艾廷华, 杨敏, 郑建滨. 地图空间形状认知的自编码器深度学习方法[J]. 测绘学报, 2021, 50(6): 757-765. |
[15] | 张传辉, 姚国标, 张力, 艾海滨, 满孝成, 黄鹏飞. 多分支网络联合的倾斜影像仿射不变特征匹配[J]. 测绘学报, 2021, 50(5): 641-651. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||