测绘学报 ›› 2019, Vol. 48 ›› Issue (12): 1562-1574.doi: 10.11947/j.AGCS.2019.20190462
邸凯昌, 刘斌, 辛鑫, 岳宗玉, 叶乐佳
收稿日期:
2019-11-07
修回日期:
2019-11-08
发布日期:
2019-12-24
通讯作者:
刘斌
E-mail:liubin@radi.ac.cn
作者简介:
邸凯昌(1967-),男,研究员,研究方向为行星遥感制图与导航定位。E-mail:dikc@radi.ac.cn
基金资助:
DI Kaichang, LIU Bin, XIN Xin, YUE Zongyu, YE Lejia
Received:
2019-11-07
Revised:
2019-11-08
Published:
2019-12-24
Supported by:
摘要: 本文对月球轨道器影像摄影测量制图技术进展、产品及应用进行综述,着重介绍了月球轨道器影像几何模型构建与精化、月球遥感影像与数字高程模型配准、多重覆盖影像择优方法及大区域制图等新技术的进展与应用。结合我国的嫦娥工程任务,阐述了月球轨道器摄影测量制图在工程及科学研究中的应用。最后对月球轨道器摄影测量制图技术未来的发展进行展望和探讨。
中图分类号:
邸凯昌, 刘斌, 辛鑫, 岳宗玉, 叶乐佳. 月球轨道器影像摄影测量制图进展及应用[J]. 测绘学报, 2019, 48(12): 1562-1574.
DI Kaichang, LIU Bin, XIN Xin, YUE Zongyu, YE Lejia. Advances and applications of lunar photogrammetric mapping using orbital images[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1562-1574.
[1] GREELEY R, BATSON R M. Planetary mapping[M]. New York:Cambridge University Press, 1990. [2] KIRK R L, ARCHINAL B A, GADDIS L R, et al. Lunar cartography:progress in the 2000s and prospects for the 2010s[C]//Proceedings of International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Melbourne. Australia:[s.n.], 2012:489-494. [3] 邸凯昌, 刘召芹, 万文辉, 等. 月球和火星遥感制图与探测车导航定位[M]. 北京:科学出版社, 2015. DI Kaichang, LIU Zhaoqin, WAN Wenhui, et al. Lunar and Mars remote sensing mapping and rover localization[M]. Beijing:Science Press, 2015. [4] DI Kaichang, LIU Yiliang, LIU Bin, et al. A self-calibration bundle adjustment method for photogrammetric processing of Chang'E-2 stereo lunar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9):5432-5442. [5] NAIF. Lunar reconnaissance orbiter camera (LROC) instrument kernel[J]. Space Science Review, 2010, 150(1):81-124. [6] LIU Yiliang, DI Kaichang. Evaluation of rational function model for geometric modeling of Chang'E-1 CCD images[C]//Proceedings of International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Guilin:[s.n.], 2011. [7] LIU Bin, LIU Yiliang, DI Kaichang, et al. Block adjustment of Chang'E-1 images based on rational function model[C]//Proceedings of Remote Sensing of the Environment:18th National Symposium on Remote Sensing of China. Wuhan:SPIE, 2014:91580G. [8] LIU B, XU B, DI K, et al. A solution to low RFM fitting precision of planetary orbiter images caused by exposure time changing[C]//Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Prague, Czech Republic:[s.n.], 2016:441-448. [9] HU Han, WU Bo. Block adjustment and coupled epipolar rectification of LROC NAC images for precision lunar topographic mapping[J]. Planetary and Space Science, 2018, 160:26-38. DOI:10.1016/j.pss.2018.03.002. [10] HU Han, WU Bo. Planetary3D:a photogrammetric tool for 3D topographic mapping of planetary bodies[C]//Proceedings of ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Enschede, The Netherlands:ISPRS, 2019:519-526. DOI:10.5194/isprs-annals-IV-2-W5-519-2019. [11] HARUYAMA J, OHTAKE M, MATSUNAGA T, et al. Selene (Kaguya) terrain camera observation results of nominal mission period[C]//Proceedings of the 40th Lunar and Planetary Science Conference. Woodlands:NASA, 2009:128-139. [12] HARUYAMA J, HARA S, HIOKI K, et al. Lunar global digital terrain model dataset produced from SELENE (Kaguya) terrain camera stereo observations[C]//Proceedings of the 43rd Lunar and Planetary Science Conference. Houston, TX:[s.n.], 2012:1200. [13] RADHADEVI P V, SOLANKI S S, NAGASUBRAMANIAN V, et al. An algorithm for geometric correction of full pass TMC imagery of Chandrayaan-1[J]. Planetary and Space Science, 2013, 79-80(1):45-51. [14] ROBINSON M S, BRYLOW S M, TSCHIMMEL M, et al. Lunar reconnaissance orbiter camera (LROC) instrument overview[J]. Space Science Reviews, 2010, 150(1-4):81-124. [15] LI R, WANG W, HE S, et al. Precision photogrammetric modeling of LROC NAC cameras and topographic products[C]//Proceedings of Annual Meeting of the Lunar Exploration Analysis Group. Washington, DC:[s.n.], 2010:36. [16] TRAN T, ROSIEK M R, BEYER R A, et al. Generating digital terrain models using LROC NAC images[C]//Proceedings of a special joint symposium of ISPRS Technical Commission IV & AutoCarto in conjunction with ASPRS/CaGIS 2010 Fall Specialty Conference. Orlando, Florida:[s.n.], 2010. [17] 王任享. 月球卫星三线阵CCD影像EFP光束法空中三角测量[J]. 测绘科学, 2018, 33(4):5-7. WANG Renxiang. EFP bundle triangulation using lunar imagery obtained from satellite three-line-array camera[J]. Science of Surveying and Mapping, 2018, 33(4):5-7. [18] 王建荣, 王新义, 李晶等. 三线阵CCD摄影测量理论在月球探测中的应用[J]. 测绘科学, 2018, 33(6):19-20. WANG Jianrong, WANG Xinyi, LI Jing, et al. The application of three-line array CCD photogrammetry theory on the lunar exploration[J]. Science of Surveying and Mapping, 2018, 33(6):19-20. [19] DI Kaichang, HU Wenmin, LIU Yiliang, et al. Co-registration of Chang'E-1 stereo images and laser altimeter data with crossover adjustment and image sensor model refinement[J]. Advances in Space Research, 2012, 50(12):1615-1628. [20] WU Bo, GUO Jian, ZHANG Yunsheng, et al. Integration of Chang'E-1 imagery and laser altimeter data for precision lunar topographic modeling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12):4889-4903. [21] WU Bo, HU Han, GUO Jian. Integration of Chang'E-2 imagery and LRO laser altimeter data with a combined block adjustment for precision lunar topographic modeling[J]. Earth and Planetary Science Letters, 2014, 391(1):1-15. [22] SIVAKUMAR V, KUMAR B, SRIVASTAVA S K, et al. DEM generation for lunar surface using chandrayaan-1 TMC triplet data[J]. Journal of the Indian Society of Remote Sensing, 2012, 40(4):551-564. [23] LIU Bin, JIA Mengna, DI Kaichang, et al. Geopositioning precision analysis of multiple image triangulation using LROC NAC lunar images[J]. Planetary and Space Science, 2018, 162(1):20-30. [24] COLTIN B, NEFIAN A. LiDAR to image coregistration on orbital data[C]//Proceedings of 2013 IEEE International Conference on Image Processing. Melbourne, VIC, Australia:IEEE, 2013:775-779. [25] XIN Xin, LIU Bin, DI Kaichang, et al. High-precision co-registration of orbiter imagery and digital elevation model constrained by both geometric and photometric information[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144(1):28-37. [26] BESL P J, MCKAY N D. A method for registration of 3D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2):239-256. [27] ROSENHOLM D, TORLEGÅRD K. Three-dimensional absolute orientation of stereo models using digital elevation models[J]. Photogrammetric Engineering & Remote Sensing, 1988, 54(10):1385-1389. [28] GUO J, WU B. Comparison of lunar topographic models derived from multiple sources based on least squares matching[C]//Proceedings of International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Melbourne, Australia:[s.n.], 2012:313-319. [29] WU Bo, GUO Jian, HU Han, et al. Co-registration of lunar topographic models derived from Chang'E-1, SELENE, and LRO laser altimeter data based on a novel surface matching method[J]. Earth and Planetary Science Letters, 2013, 364(1):68-84. [30] BECKER K J, ARCHINAL B A, HARE T H, et al. Criteria for automated identification of stereo image pairs[C]//Proceedings of the 46th Lunar and Planetary Science Conference. The Woodlands, Texas:[s.n.], 2015:2703. [31] HENRIKSEN M R, MANHEIM M R, SPEYERER E J, et al. Extracting accurate and precise topography from LROC narrow angle camera stereo observations[C]//Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Prague, Czech Republic:[s.n.], 2016:397-403. [32] HENRIKSEN M R, MANHEIM M R, BURNS K N, et al. Extracting accurate and precise topography from LROC narrow angle camera stereo observations[J]. Icarus, 2017, 283(5):122-137. [33] BEYER R A, ALEXANDROV O, MCMICHAEL S. The Ames Stereo Pipeline:NASA's open source software for deriving and processing terrain data[J]. Earth and Space Science, 2018, 5(9):537-548. [34] RE C, CREMONESE G, DALL'ASTA E, et al. Performance evaluation of DTM area-based matching reconstruction of Moon and Mars[C]//Proceedings of Image and Signal Processing for Remote Sensing XVIII. Edinburgh, United Kingdom:SPIE, 2012:85370V. [35] HIRSCHMULLER H. Stereo processing by semiglobal matching and mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2):328-341. [36] 李春来, 刘建军, 任鑫, 等. 基于嫦娥二号立体影像的全月高精度地形重建[J]. 武汉大学学报(信息科学版), 2018, 43(4):485-495. LI Chunlai, LIU Jianjun, REN Xin, et al. Lunar global high-precision terrain reconstruction based on Chang'e-2 stereo images[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4):485-495. [37] BARKER M K, MAZARICO E, NEUMANN G A, et al. A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera[J]. Icarus, 2016, 273(7):346-355. [38] DI Kaichang, JIA Mengna, XIN Xin, et al. High-resolution large-area digital orthophoto map generation using LROC NAC images[J]. Photogrammetric Engineering & Remote Sensing, 2019, 85(7):481-491. [39] SMITH D E, ZUBER M T, NEUMANN G A, et al. Results from the lunar orbiter laser altimeter (LOLA):global, high-resolution topographic mapping of the moon[C]//Proceedings of the 42nd Lunar and Planetary Science Conference. The Woodlands, Texas:[s.n.], 2011:2350. [40] SCHOLTEN F, OBERST J, MATZ K D, et al. GLD100:the near-global lunar 100 m raster DTM from LROC WAC stereo image data[J]. Journal of Geophysical Research:Planets, 2012, 117(E12):E00H17. [41] ARAKI H, TAZAWA S, NODA H, et al. Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry[J]. Science, 2009, 323(5916):897-900. [42] 李春来, 任鑫, 刘建军, 等. 嫦娥一号激光测距数据及全月球DEM模型[J]. 中国科学:地球科学, 2010, 40(3):281-293. LI Chunlai, REN Xin, LIU Jianjun, et al. Laser altimetry data of Chang'E-1 and the global lunar DEM model[J]. Science China Earth Sciences, 2010, 40(3):281-293. [43] 胡文敏,邸凯昌,岳宗玉,等.嫦娥一号激光高度计数据交叉点分析与平差处理[J]. 测绘学报,2013,42(2):218-224. HU Wenmin, DI Kaichang, YUE Zongyu, et al. Crossover anlysis and adjustment for Chang'E-1 laser altimeter data[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(2):218-224. [44] 李春来.嫦娥一号三线阵CCD数据摄影测量处理及全月球数字地形图[J]. 测绘学报,2013,42(6):853-860. LI Chunlai. Photogrammetric processing and lunar global topographic map from the Chang'E-13 line-array CCD data[J]. Acta Geodaetica et Cartographica Sinica, 2013,42(6):853-860. [45] LEE E M, WELLER L A, RICHIE J O, et al. Controlled polar mosaics of the moon for LMMP by USGS[C]//Proceedings of the 43rd Lunar and Planetary Science Conference. The Woodlands, Texas:[s.n.], 2012:2507. [46] WALLER D A, BOYD A K, SPEYERER E J, et al. Constructing NAC polar maps that optimize lunar surface illumination[C]//Proceedings of the 43rd Lunar and Planetary Science Conference. The Woodlands, Texas:[s.n.], 2012:2531. [47] ARCHINAL B A, LEE E, WELLER L, et al. Status of geodetically controlled high-resolution LROC polar mosaics[C]//Proceedings of the 46th Lunar and Planetary Science Conference. The Woodlands, Texas:[s.n.], 2015:1571. [48] NASA, GSFC, ASU. http://lroc.sese.asu.edu/images/gigapan/[EB/OL]. 2014. [49] LIU B, NIU S, XIN X, et al. High precision DTM and DOM generating using multi-source orbital data on Chang'e-4 landing site[C]//Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Enschede, The Netherlands:[s.n.], 2019:1413-1417. [50] DI K, LIU Z, LIU B, et al. Topographic analysis of Chang'e-4 landing site using orbital, descent and ground data[C]//Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Enschede, The Netherlands:[s.n.], 2019:1383-1387. [51] 邸凯昌, 刘召芹, 刘斌, 等. 多源数据的嫦娥四号着陆点定位[J]. 遥感学报, 2019, 23(1):177-184. DOI:10.11834/jrs.20199015. DI Kaichang, LIU Zhaoqin, LIU Bin, et al. Chang'e-4 lander localization based on multi-source data[J]. Journal of Remote Sensing, 2019, 23(1):177-184. DOI:10.11834/jrs.20199015. [52] FLAHAUT J, BLANCHETTE-GUERTIN J F, JILLY C, et al. Identification and characterization of science-rich landing sites for lunar lander missions using integrated remote sensing observations[J]. Advances in Space Research, 2012, 50(12):1647-1665. [53] National Research Council. The scientific context for exploration of the moon[M]. Washington, DC:National Academies Press, 2007. [54] 赵洋, 李飞, 吴波, 等. 嫦娥四号探测器着陆区精确选择与评价系统设计[J]. 航天器工程, 2019, 28(4):22-30. ZHAO Yang, LI Fei, WU Bo, et al. Precise landing site selection and evaluation system design for Chang'e-4 probe[J]. Spacecraft Engineering, 2019, 28(4):22-30. [55] 李飞, 张熇, 吴学英, 等. 月球背面地形对软着陆探测的影响分析[J]. 深空探测学报, 2017, 4(2):143-149. LI Fei, ZHANG He, WU Xueying, et al. Influence analysis of terrain of the farside of the moon on soft-landing[J]. Journal of Deep Space Exploration, 2017, 4(2):143-149. [56] WAGNER R V, NELSON D M, PLESCIA J B, et al. Coordinates of anthropogenic features on the moon[J]. Icarus, 2017, 283:92-103. [57] 刘召芹, 万文辉, 彭嫚, 等. 遥感制图与导航定位技术在嫦娥三号遥操作中的应用[J]. 遥感学报, 2014, 18(5):971-980. DOI:10.11834/jrs.20144072. LIU Zhaoqin, WAN Wenhui, PENG Man, et al. Remote sensing mapping and localization techniques for teleoperation of Chang'e-3 rover[J]. Journal of Remote Sensing, 2014, 18(5):971-980. DOI:10.11834/jrs.20144072. [58] NEUKUM G, KÖNIG B, ARKANI-HAMED J. A study of lunar impact crater size-distributions[J]. The Moon, 1975, 12(2):201-229. [59] NEUKUM G. Meteorite bombardment and dating of planetary surfaces[D]. Washington, DC:NASA, 1984. [60] HARTMANN W K, STROM R G, GRIEVE R A F, et al. Chronology of planetary volcanism by comparative studies of planetary craters[M]//KAULA W M, MERRILL R B, RIDINGS R. Basaltic Volcanism on the Terrestrial Planets. Elmsford, NY:Pergamon Press, 1981:1050-1127. [61] HIESINGER H, HEAD III J W, WOLF U, et al. Ages and stratigraphy of lunar mare basalts in Mare Frigoris and other nearside Maria based on crater size-frequency distribution measurements[J]. Journal of Geophysical Research:Planets, 2010:115(E3):E03003. [62] YUE Z, MICHAEL G G, DI K, et al. Global survey of lunar wrinkle ridge formation times[J]. Earth and Planetary Science Letters, 2017, 447(11):14-20. [63] WHITTEN J, HEAD J W, STAID M, et al. Lunar mare deposits associated with the Orientale impact basin:new insights into mineralogy, history, mode of emplacement, and relation to Orientale Basin evolution from Moon Mineralogy Mapper (M3) data from Chandrayaan-1[J]. Journal of Geophysical Research:Planets, 2011, 116(E6):E00G09. [64] HIESINGER H, VAN DER BOGERT C H, PASCKERT J H, et al. How old are young lunar craters?[J]. Journal of Geophysical Research:Planets, 2012, 117(E12):E00H10. [65] ROBBINS S J. New crater calibrations for the lunar crater-age chronology[J]. Earth and Planetary Science Letters, 2014, 403(10):188-198. [66] DI Kaichang, SUN Shujuan, YUE Zongyu, et al. Lunar regolith thickness determination from 3D morphology of small fresh craters[J]. Icarus, 2016, 267(3):12-23. [67] YUE Z, DI K, LIU Z, et al. Lunar regolith thickness deduced from concentric craters in the CE-5 landing area[J]. Icarus, 2019, 329(3):46-54. [68] DI Kaichang, XU Bin, PENG Man, et al. Rock size-frequency distribution analysis at the Chang'E-3 landing site[J]. Planetary and Space Science, 2016, 120(1):103-112. [69] LI Yuan, BASILEVSKY A T, XIE Minggang, et al. Correlations between ejecta boulder spatial density of small lunar craters and the crater age[J]. Planetary and Space Science, 2018, 162:52-61. [70] WU Bo, HUANG Jun, LI Yuan, et al. Rock abundance and crater density in the candidate Chang'E-5 landing region on the moon[J]. Journal of Geophysical Research:Planets, 2018, 123(12):3256-3272. [71] 罗中飞,康志忠,刘心怡.融合嫦娥一号CCD影像与DEM数据的月球撞击坑自动提取和识别[J]. 测绘学报, 2014,43(9):924-930. LUO Zhongfei, KANG Zhizhong, LIU Xinyi. The automatic extraction and recognition of lunar impact craters fusing CCD images and DEM data of Chang'E-1[J].Acta Geodaetica et Cartographica Sinica, 2014,43(9):924-939. |
[1] | 张祖勋, 姜慧伟, 庞世燕, 胡翔云. 多时相遥感影像的变化检测研究现状与展望[J]. 测绘学报, 2022, 51(7): 1091-1107. |
[2] | 许强, 朱星, 李为乐, 董秀军, 戴可人, 蒋亚楠, 陆会燕, 郭晨. “天-空-地”协同滑坡监测技术进展[J]. 测绘学报, 2022, 51(7): 1416-1436. |
[3] | 张力, 刘玉轩, 孙洋杰, 蓝朝桢, 艾海滨, 樊仲藜. 数字航空摄影三维重建理论与技术发展综述[J]. 测绘学报, 2022, 51(7): 1437-1457. |
[4] | 王任享, 王建荣. 我国卫星摄影测量发展及其进步[J]. 测绘学报, 2022, 51(6): 804-810. |
[5] | 张祖勋, 郑顺义, 王晓南. 工业摄影测量技术发展与应用[J]. 测绘学报, 2022, 51(6): 843-853. |
[6] | 李清泉, 黄惠, 姜三, 胡庆武, 于文率. 优视摄影测量方法及精度分析[J]. 测绘学报, 2022, 51(6): 996-1007. |
[7] | 张永军, 万一, 史文中, 张祖勋, 李彦胜, 季顺平, 郭浩宇, 李礼. 多源卫星影像的摄影测量遥感智能处理技术框架与初步实践[J]. 测绘学报, 2021, 50(8): 1068-1083. |
[8] | 张永军, 张祖勋, 龚健雅. 天空地多源遥感数据的广义摄影测量学[J]. 测绘学报, 2021, 50(1): 1-11. |
[9] | 姜三, 江万寿. Delaunay三角网约束下的影像稳健匹配方法[J]. 测绘学报, 2020, 49(3): 322-333. |
[10] | 汪利斌, 胡翰, 朱庆, 丁雨淋, 陈敏. 局部表面参数化的实景三角网模型语义增强方法[J]. 测绘学报, 2020, 49(2): 225-234. |
[11] | 王任享, 王建荣, 李晶, 朱雷鸣, 李五, 杨俊峰. 天绘一号03星无控定位精度改进策略[J]. 测绘学报, 2019, 48(6): 671-675. |
[12] | 陈晓勇, 何海清, 周俊超, 安谱阳, 陈婷. 低空摄影测量立体影像匹配的现状与展望[J]. 测绘学报, 2019, 48(12): 1595-1603. |
[13] | 王建荣, 王任享, 胡莘. 三线阵影像外方位元素平滑方程自适应光束法平差[J]. 测绘学报, 2018, 47(7): 968-972. |
[14] | 龚健雅, 季顺平. 摄影测量与深度学习[J]. 测绘学报, 2018, 47(6): 693-704. |
[15] | 晏磊, 陈瑞, 孙岩标. 极坐标数字摄影测量理论与空间信息坐标体系初探[J]. 测绘学报, 2018, 47(6): 705-721. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||