测绘学报 ›› 2024, Vol. 53 ›› Issue (2): 332-343.doi: 10.11947/j.AGCS.2024.20220321

• 摄影测量学与遥感 • 上一篇    下一篇

摄影测量局部场景稳健合并的并行式运动恢复结构方法

肖腾1, 王鑫2, 梅熙3, 叶志伟1, 颜青松2, 邓非2,4   

  1. 1. 湖北工业大学计算机学院, 湖北 武汉 430068;
    2. 武汉大学测绘学院, 湖北 武汉 430079;
    3. 中铁二院工程集团有限责任公司, 四川 成都 610083;
    4. 武汉天际航信息科技股份有限公司, 湖北 武汉 430223
  • 收稿日期:2022-05-10 修回日期:2023-04-11 发布日期:2024-03-08
  • 作者简介:肖腾(1990-),男,博士,讲师,研究方向为摄影测量与实景三维重建。E-mail:xiao@hbut.edu.cn
  • 基金资助:
    国家自然科学基金(42301491;42301507);湖北省重点研发计划项目(2022BAA035);湖北工业大学科研启动基金(XJ2022002001)

Robust merging of subblock reconstructions for parallel structure from motion in photogrammetry

XIAO Teng1, WANG Xin2, MEI Xi3, YE Zhiwei1, YAN Qingsong2, DENG Fei2,4   

  1. 1. School of Computer Science, Hubei University of Technology, Wuhan 430068, China;
    2. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China;
    3. China Railway Eryuan Engineering Group Co., Ltd., Chengdu 610083, China;
    4. Wuhan Tianjihang Information Technology Co., Ltd., Wuhan 430223, China
  • Received:2022-05-10 Revised:2023-04-11 Published:2024-03-08
  • Supported by:
    The National Natural Science Foundation of (Nos. 42301491; 42301507); The Hubei Key Research and Development Project (No. 2022BAA035); Research Startup Fund of Hubei University of Technology (No. XJ2022002001)

摘要: 针对并行式运动恢复结构(SfM)在局部场景合并时稳健性差的问题,提出一种摄影测量局部场景稳健合并的并行式SfM方法。对整个场景的影像关联图进行分块及扩展处理,得到相互重叠的子区块,并利用一种改进的增量式SfM方法生成局部场景重建结果。在局部场景合并时,首先利用局部场景的重叠关系构建子区块关联图,并以子区块三元组为单元,进行粗差剔除;然后,利用子区块三元组的代数性质,优化得到更符合几何一致性的子区块间的相对变换;最后,从上述结果中计算得到更准确的局部场景到统一坐标系下的尺度、旋转、平移变换。试验采用无人机影像,结果表明本文方法在局部场景合并时有更好的稳健性,而且SfM结果的精确度也要优于其他并行式方法和COLMAP,在摄影测量和实景三维重建中有较大的应用潜力。

关键词: 摄影测量, 实景三维, 无人机影像, 并行式运动恢复结构

Abstract: In this paper, we proposed an improved parallel structure from motion pipeline in photogrammetry by robustifying the merging of subblock reconstructions in a better fashion. Specifically, the whole block represented by a view graph is divided into a number of overlapped subblocks via graph partition and expansion, and an improved incremental SfM is employed to generate the SfM reconstruction of each subblock. To merge these subblock SfM reconstructions in a more robust manner, a subblock graph indicating the overlapping relationship of subblock reconstructions is first built. By considering the geometry consistencies of subblock triplets, gross errors are detected. Then, we leverage the algebraic properties of subblock triplets, which aims to make them more geometrically consistent, to refine the relative transformations between subblock reconstructions. Finally, more accurate relative transformations between subblock reconstructions can be obtained to boost the subsequential merging. Experimental results using UAV images show that the proposed method can guarantee robustness in the subblock reconstruction merging stage. The precision of our SfM results is better than several state-of-the-art parallel SfM methods and the popular COLMAP. Furthermore, it has significant potential for use in photogrammetry and 3D Real Scene reconstruction.

Key words: photogrammetry, 3D real scene, UAV images, parallel structure from motion

中图分类号: