测绘学报 ›› 2015, Vol. 44 ›› Issue (10): 1167-1176.doi: 10.11947/j.AGCS.2015.20140352

• 地图学与地理信息 • 上一篇    下一篇

曲率积分约束的GPS浮动车地图匹配方法

曾喆1, 李清泉2,3, 邹海翔4, 万剑华1   

  1. 1. 中国石油大学(华东)地球科学与技术学院, 山东 青岛 266580;
    2. 深圳大学土木工程学院空间信息智能感知与服务深圳市重点实验室, 广东 深圳 518060;
    3. 武汉大学测绘遥感信息工程国家重点实验室, 湖北 武汉 430079;
    4. 深圳市规划国土发展研究中心, 广东 深圳 518034
  • 收稿日期:2014-07-07 修回日期:2015-03-31 出版日期:2015-10-20 发布日期:2015-10-23
  • 作者简介:曾喆(1979—),男,博士,讲师,研究方向为GPS导航.E-mail:zz0459@gmail.com
  • 基金资助:
    国家自然科学基金(41101355;41271400;41371377);中央高校基本科研业务费专项资金(13CX02034A);深圳市科技研发资金(ZDSY20121019111146499);深圳市战略性新兴产业发展专项资金(JCYJ20121019111128765);空间信息智能感知与服务深圳市重点实验室(深圳大学)开放基金

Curvature Integration Constrained Map Matching Method for GPS Floating Car Data

ZENG Zhe1, LI Qingquan2,3, ZOU Haixiang4, WAN Jianhua1   

  1. 1. School of Geosciences, China University of Petroleum, Qingdao266580, China;
    2. Shenzhen Key Laboratory of Spatial Smart Sensing and Services, College of Civil Engineering, Shenzhen University, Shenzhen 518060, China;
    3. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China;
    4. Shenzhen Urban Planning & Land Resource Research Center(P&LRC), Shenzhen 518034, China
  • Received:2014-07-07 Revised:2015-03-31 Online:2015-10-20 Published:2015-10-23
  • Supported by:
    The National Natural Science Foundation of China (Nos41101355,41271400,41371377);The Fundamental Research Funds for the Central Universities (No.13CX02034A),Shenzhen Scientific Research and Development Funding Program (No.ZDSY20121019111146499),Shenzhen Dedicated Funding of Strategic Emerging Industry Development Program (No.JCYJ20121019111128765),Open Research Fund Program of Shenzhen Key Laboratory of Spatial Smart Sensing and Services

摘要: 提出了以轨迹曲线的曲率积分值作为地图匹配特征的匹配方法,利用轨迹曲率积分值约束前后相邻轨迹点的关联匹配, 采用不同类型行驶路径以及不同采样间隔,实施了浮动车地图匹配试验,结果表明,以匹配正确率和稳定性评判,本文提出的曲率积分约束的浮动车地图匹配方法优于现有的未采用曲率特征匹配的经典浮动车地图匹配方法.

关键词: GPS, 轨迹, 地图匹配, 曲率, 曲率积分

Abstract: The paper presents a map-matching method which mainly considers the curvature integral value of the curve as a map-matching characteristic for constraining the associated matching between two adjacent GPS track points. Through the implementation of map matching experiments for floating car data on the different conditions of both route categories and sampling intervals, the proposed curvature integration constrained map-matching method could be superior to the classic floating car map matching method when evaluating them by the matching accuracy and stability.

Key words: GPS, trajectories, map matching, curvature, curvature integration

中图分类号: