测绘学报 ›› 2024, Vol. 53 ›› Issue (12): 2349-2360.doi: 10.11947/j.AGCS.2024.20230517

• 摄影测量学与遥感 • 上一篇    

自适应局部空谱一致下的机载LiDAR数据建筑物提取算法

王丽英1(), 张康丽1, 李鑫奥1, 有泽1, 丰勇2   

  1. 1.辽宁工程技术大学测绘与地理科学学院,辽宁 阜新 123000
    2.辽宁省自然资源厅地理信息管理处,辽宁 沈阳 110032
  • 收稿日期:2023-11-09 发布日期:2025-01-06
  • 作者简介:第一王丽英(1982—),女,博士,教授,研究方向为激光雷达数据处理及应用。E-mail:wangliyinglntu@163.com
  • 基金资助:
    国家自然科学基金(42201482);2024年度辽宁省自然基金联合基金计划项目;辽宁工程技术大学GPU资源支持项目

An algorithm for building extraction from airborne LiDAR data under adaptive local spatial-spectral consistency

Liying WANG1(), Kangli ZHANG1, Xinao LI1, Ze YOU1, Yong FENG2   

  1. 1.School of Geomatics, Liaoning Technical University, Fuxin 123000, China
    2.Division of Geoinformation Management, Department of Natural Resources of Liaoning Province, Shenyang 110032, China
  • Received:2023-11-09 Published:2025-01-06
  • About author:WANG Liying (1982—), female, PhD, professor, majors in LiDAR data processing and application. E-mail: wangliyinglntu@163.com
  • Supported by:
    The National Natural Science Foundation of China(42201482);Joint Fund Project of Liaoning Provincial Natural Science Foundation in 2024;GPU Resource Support Project of Liaoning Technical University

摘要:

现有研究均将建筑物激光反射强度的全局统计特性用于辅助机载激光雷达数据的建筑物提取,但是这类方法无法满足大尺度复杂城区场景下光谱迥异建筑物完备、准确提取的需求。为此,本文提出一种自适应局部空谱一致下的机载LiDAR数据建筑物提取方法。该方法首先将原始机载LiDAR数据转换为LiDAR 3D影像。然后,依据建筑物高程跳变和边缘局部接近直线特性选取种子体素,进而依据单体建筑示出的空间连续性及光谱一致性将与种子体素空谱一致的连通分量标记为建筑物屋顶。其中,单体建筑的光谱一致性由统计空间连通的种子体素的强度特性给出。最后,结合建筑屋顶对立面的空间约束以及立面的局部强度一致性约束提取建筑物立面。该方法通过自适应于各建筑单体光谱的设计解决了不符合光谱全局统计特性的建筑物的准确提取问题,提升了点云光谱信息的使用价值,并由此拓宽了点云光谱信息的应用场景。选用国际摄影测量与遥感协会提供,不同复杂程度的3组城区场景实测机载LiDAR数据测试本文方法的可行性和有效性。试验结果表明:可实现不同复杂程度场景下的建筑物提取;建筑物提取结果的平均完整率、正确率及质量分别为99.0%、98.0%、96.8%,明显优于传统的利用光谱全局统计特性的建筑物提取方法。

关键词: 机载激光雷达, 建筑物提取, 空谱一致, 点云, 全局统计特性

Abstract:

All the existing studies use the global statistical characteristics of laser reflection intensity of buildings to aid the extraction of buildings from airborne LiDAR data, but this solution cannot meet the needs of comprehensive and accurate extraction of buildings with different spectra in large-scale complex urban scenes. Therefore, a building extraction method from airborne LiDAR data based on adaptive local spatial-spectral consistency is developed. The proposed method first converts raw airborne LiDAR data into 3D image. Then, the seeds are selected according to the characteristics of building elevation jump and edge approaching straight line. Subsequently, the connected components that are spatially and spectrally consistent with the seedsare labeled as the building roof, in which the spectral consistency is given by the statistical intensity properties of an individual building. Finally, the building facade is extracted by combining the spatial constraint of the extracted building roof and the local intensity consistency constraints. This method solves the problem of accurate extraction of buildings that do not conform to the global statistical characteristic of the spectrum by self-adapting to the local spectrum of each individual building, improves the use value of point cloud spectral information, and thus broadens the application scenarios of point cloud spectral information. Three airborne LiDAR datasets of urban scene with different complexities provided by International Association for Photogrammetry and Remote Sensing are used to test the feasibility and effectiveness of the proposed method. The experimental results show that the proposed method can excellently extract buildings in scenes with different complexities. The average completeness, accuracy and quality of the building extraction results are 99.0%, 98.0% and 96.8%, respectively, which are obviously better than the traditional building extraction method using the global statistical properties of the spectrum.

Key words: airborne LiDAR, building extraction, spatial-spectral consistency, point cloud, global statistical characteristic

中图分类号: