测绘学报 ›› 2022, Vol. 51 ›› Issue (10): 2001-2019.doi: 10.11947/j.AGCS.2022.20220294
朱建军1,2, 胡俊1,2, 李志伟1,2, 孙倩3, 郑万基1
收稿日期:
2022-05-05
修回日期:
2022-08-27
发布日期:
2022-11-05
通讯作者:
胡俊
E-mail:csuhujun@csu.edu.cn
作者简介:
朱建军(1962—),男,教授,博士生导师,研究方向为测量平差与InSAR数据处理。E-mail:zjj@mail.csu.edu.cn
基金资助:
ZHU Jianjun1,2, HU Jun1,2, LI Zhiwei1,2, SUN Qian3, ZHENG Wanji1
Received:
2022-05-05
Revised:
2022-08-27
Published:
2022-11-05
Supported by:
摘要: InSAR技术的发展及数据的丰富,使其成为了滑坡监测中的重要手段之一。本文首先从InSAR滑坡监测的数据选择开始,介绍不同数据、场景对于InSAR滑坡监测的影响;其次,对当前影响InSAR滑坡监测精度的主要因素进行分析,综述了目前主流的解决方法;然后,对当前InSAR滑坡三维形变监测的方法做了系统性的分类,总结了各自的优缺点及使用范围;最后,对目前限制InSAR滑坡监测的主要问题、可能的解决途径及未来的发展方向等问题进行了探讨。
中图分类号:
朱建军, 胡俊, 李志伟, 孙倩, 郑万基. InSAR滑坡监测研究进展[J]. 测绘学报, 2022, 51(10): 2001-2019.
ZHU Jianjun, HU Jun, LI Zhiwei, SUN Qian, ZHENG Wanji. Recent progress in landslide monitoring with InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2001-2019.
[1] 张勤, 黄观文, 杨成生. 地质灾害监测预警中的精密空间对地观测技术[J]. 测绘学报, 2017, 46(10): 1300-1307. DOI:10.11947/j.AGCS.2017.20170453. ZHANG Qin, HUANG Guanwen, YANG Chengsheng. Precision space observation technique for geological hazard monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1300-1307. DOI:10.11947/j.AGCS.2017.20170453. [2] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10): 1717-1733. DOI: 10.11947/j.AGCS.2017.20170350. ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717-1733. DOI: 10.11947/j.AGCS.2017.20170350. [3] FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8-20. [4] LIANG Hongyu, LI Xin, ZHANG Lei, et al. Investigation of slow-moving artificial slope failure with multi-temporal InSAR by combining persistent and distributed scatterers: a case study in northern Taiwan[J]. Remote Sensing, 2020, 12(15): 2403. [5] DONG Jie, ZHANG Lu, LIAO Mingsheng, et al. Improved correction of seasonal tropospheric delay in InSAR observations for landslide deformation monitoring[J]. Remote Sensing of Environment, 2019, 233: 111370. [6] HU Xie, BÜRGMANN R, SCHULZ W H, et al. Four-dimensional surface motions of the Slumgullion landslide and quantification of hydrometeorological forcing[J]. Nature Communications, 2020, 11(1): 2792. [7] HU Xie, BÜRGMANN R, LU Zhong, et al. Mobility, thickness, and hydraulic diffusivity of the slow-moving monroe landslide in California revealed by L-band satellite radar interferometry[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(7): 7504-7518. [8] LI Menghua, ZHANG Lu, DING Chao, et al. Retrieval of historical surface displacements of the Baige landslide from time-series SAR observations for retrospective analysis of the collapse event[J]. Remote Sensing of Environment, 2020, 240: 111695. [9] LIU Yuxin, XU Caijun, LIU Yang. Monitoring and forecasting analysis of a landslide in Xinmo, Mao county, using Sentinel-1 data[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2019, 30(1): 85-96. [10] SHI Xuguo, HU Xie, SITAR N, et al. Hydrological control shift from river level to rainfall in the reactivated Guobu slope besides the Laxiwa hydropower station in China[J]. Remote Sensing of Environment, 2021, 265: 112664. [11] HANSSEN R F. Radar interferometry: data interpretation and error analysis[M]. Dordrecht: Springer, 2001. [12] REN Tianhe, GONG Wenping, BOWA V M, et al. An improved R-index model for terrain visibility analysis for landslide monitoring with InSAR[J]. Remote Sensing, 2021, 13(10): 1938. [13] KROPATSCH W G, STROBL D. The generation of SAR layover and shadow maps from digital elevation models[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(1): 98-107. [14] NOTTI D, DAVALILLO J C, HERRERA G, et al. Assessment of the performance of X-band satellite radar data for landslide mapping and monitoring: upper tena valley case study[J]. Natural Hazards and Earth System Sciences, 2010, 10(9): 1865-1875. [15] CHEN Xiaohong, SUN Qian, HU Jun. Generation of complete SAR geometric distortion maps based on DEM and neighbor gradient algorithm[J]. Applied Sciences, 2018, 8(11): 2206. [16] WILKINSON A J. Synthetic aperture radar interferometry: a statistical model for layover areas[C]//Proceedings of 1999 IEEE International Geoscience and Remote Sensing Symposium. Hamburg, Gernamy: IEEE, 1999: 2392-2394. [17] 任云. InSAR叠掩与阴影检测技术[D]. 长沙:国防科学技术大学, 2013. REN Yun. Research on layover and shadow detecting in InSAR[D]. Changsha: National University of Defense Technology, 2013. [18] PLANK S, SINGER J, THURO K, et al. The suitability of the differential radar interferometry method for deformation monitoring of landslides: a new GIS based evaluation tool[C]//Proceedings of the 11th IAEG Congress Geologically Active.Auckland, New Zealand: [s.n.], 2010. [19] GINI F, LOMBARDINI F, MONTANARI M. Layover solution in multibaseline SAR interferometry[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(4): 1344-1356. [20] GUO Rui, LI Sumin, CHEN Ya'nan, et al. Identification and monitoring landslides in longitudinal range-gorge region with InSAR fusion integrated visibility analysis[J]. Landslides, 2021, 18(2): 551-568. [21] COLESANTI C, WASOWSKI J. Investigating landslides with space-borne synthetic aperture radar (SAR) interferometry[J]. Engineering Geology, 2006, 88(3-4): 173-199. [22] 孙倩. 多基线、多时相和多平台InSAR滑坡监测研究[D]. 长沙:中南大学, 2014. SUN Qian. Investigation of landslides with multi-baseline, multi-temporal and multi-sensor InSAR[D].Changsha: Central South University,2014. [23] BASELICE F, BUDILLON A, FERRAIOLI G, et al. Layover solution in SAR imaging: a statistical approach[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 577-581. [24] 张福博, 梁兴东, 吴一戎. 一种基于地形驻点分割的多通道SAR三维重建方法[J]. 电子与信息学报, 2015, 37(10): 2287-2293. ZHANG Fubo, LIANG Xingdong, WU Yirong. 3D reconstruction for multi-channel SAR interferometry using terrain stagnation point based division[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2287-2293. [25] BVRGI P M, LOHMAN R B. Impact of forest disturbance on InSAR surface displacement time series[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 128-138. [26] SARABANDI K, WILSEN C B. Temporal decorrelation of vegetation by environmental and seasonal effects[C]//Proceedings of 2000 IEEE International Geoscience and Remote Sensing Symposium. Honolulu, HI, USA: IEEE, 2000: 1399-1401. [27] STROZZI T, FARINA P, CORSINI A, et al. Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry[J]. Landslides, 2005, 2(3): 193-201. [28] WEI Meng, SANDWELL D T. Decorrelation of L-band and C-band interferometry over vegetated areas in California[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(7): 2942-2952. [29] MORISHITA Y, HANSSEN R F. Temporal decorrelation in L-, C-, and X-band satellite radar interferometry for pasture on drained peat soils[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 1096-1104. [30] SAMIEI E S. Exploitation of distributed scatterers in synthetic aperture radar interferometry[D]. Delft: Delft University of Technology, 2017. [31] 张路, 廖明生, 董杰, 等. 基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别——以四川丹巴为例[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2039-2049. ZHANG Lu, LIAO Mingsheng, DONG Jie, et al. Early detection of landslide hazards in mountainous areas of west China using time series SAR interferometry: a case study of Danba, Sichuan[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2039-2049. [32] SANTORO M, WEGMULLER U, ASKNE J I H. Signatures of ERS-ENVISAT interferometric SAR coherence and phase of short vegetation: an analysis in the case of maize fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 1702-1713. [33] ZHANG Meimei, LI Zhen, TIAN Bangsen, et al. A method for monitoring hydrological conditions beneath herbaceous wetlands using multi-temporal ALOS PALSAR coherence data[J]. Remote Sensing Letters, 2015, 6(8): 618-627. [34] MOHAMMADIMANESH F, SALEHI B, MAHDIANPARI M, et al. Multi-temporal, multi-frequency, and multi-polarization coherence and SAR backscatter analysis of wetlands[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 142: 78-93. [35] ARAB-SEDZE M, HEGGY E, BRETAR F, et al. Quantification of L-band InSAR coherence over volcanic areas using LiDAR and in situ measurements[J]. Remote Sensing of Environment, 2014, 152: 202-216. [36] BAI Zechao, FANG Shibo, GAO Jian, et al. Could vegetation index be derive from synthetic aperture radar? The linear relationship between interferometric coherence and NDVI[J]. Scientific Reports, 2020, 10(1): 6749. [37] CHEN Yongang, SUN Qian, HU Jun. Quantitatively estimating of InSAR decorrelation based on Landsat-derived NDVI[J]. Remote Sensing, 2021, 13(13): 2440. [38] KURUOGLU E E, ZERUBIA J. Modeling SAR images with a generalization of the rayleigh distribution[J]. IEEE Transactions on Image Processing, 2004, 13(4): 527-533. [39] FERRETTI A, FUMAGALLI A, NOVALI F, et al. A new algorithm for processing interferometric data-stacks: squeeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3460-3470. [40] PARIZZI A, BRCIC R. Adaptive InSAR stack multilooking exploiting amplitude statistics: a comparison between different techniques and practical results[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 441-445. [41] MILLER I. Probability, random variables, and stochastic processes[J]. Technometrics, 1966, 8(2): 378-380. [42] JIANG Mi, DING Xiaoli, HANSSEN R F, et al. Fast statistically homogeneous pixel selection for covariance matrix estimation for multitemporal InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1213-1224. [43] DE ZAN F, ZONNO M, LÓPEZ-DEKKER P. Phase inconsistencies and multiple scattering in SAR interfero-metry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6608-6616. [44] ANSARI H, DE ZAN F, BAMLER R. Efficient phase estimation for interferogram stacks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7): 4109-4125. [45] GUARNIERI A M, TEBALDINI S. On the exploitation of target statistics for SAR interferometry applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11): 3436-3443. [46] GUARNIERI A M, TEBALDINI S. Hybrid CramÉr-rao bounds for crustal displacement field estimators in SAR interferometry[J]. IEEE Signal Processing Letters, 2007, 14(12): 1012-1015. [47] TAMBURINI A, CONTE S, LARINI G, et al. Application of squeeSARTM to the characterization of deep seated gravitational slope deformations: the Berceto case study (Parma, Italy) [M].Berlin,Heidelberg:Springer,2013:437-443. [48] PERISSIN D, WANG T. Repeat-pass SAR interferometry with partially coherent targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1): 271-280. [49] FORNARO G, VERDE S, REALE D, et al. CAESAR: an approach based on covariance matrix decomposition to improve multibaseline-multitemporal interferometric SAR processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2050-2065. [50] CAO Ning, LEE H, JUNG H C. A phase-decomposition-based PSInSAR processing method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 1074-1090. [51] SAMIEI-ESFAHANY S, MARTINS J E, VAN LEIJEN F, et al. Phase estimation for distributed scatterers in InSAR stacks using integer least squares estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 5671-5687. [52] ANSARI H, DE ZAN F, BAMLER R. Sequential estimator: toward efficient InSAR time series analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5637-5652. [53] CAO Ning, LEE H, JUNG H C. Mathematical framework for phase-triangulation algorithms in distributed-scatterer interferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1838-1842. [54] EVEN M, SCHULZ K. InSAR deformation analysis with distributed scatterers: a review complemented by new advances[J]. Remote Sensing, 2018, 10(5): 744. [55] DU Yanan, ZHANG Lei, FENG Guangcai, et al. On the accuracy of topographic residuals retrieved by MTInSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 1053-1065. [56] ZHANG Lei, JIA Hongguo, LU Zhong, et al. Minimizing height effects in MTInSAR for deformation detection over built areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9167-9176. [57] 常亮. 基于GPS和美国环境预报中心观测信息的InSAR大气延迟改正方法研究[J]. 测绘学报, 2011, 40(5): 669. CHANG Liang. InSAR atmospheric delay correction based on GPS observations and NCEP data[J].Acta Geodaetica et Cartographica Sinica, 2011, 40(5): 669. [58] DELACOURT C, BRIOLE P, ACHACHE J A. Tropospheric corrections of SAR interferograms with strong topography: application to Etna[J]. Geophysical Research Letters,1998, 25(15): 2849-2852. [59] ONN F. Modeling water vapor using GPS with application to mitigating InSAR atmospheric distortions[D]. Stanford: Stanford University, 2006. [60] LI Zhenhong, MULLER J P, CROSS P. Tropospheric correction techniques in repeat-pass SAR interferometry[C]//Proceedings of 2003 FRINGE Workshop. Frascati, Italy: ESA/ESRIN, 2003. [61] LI Zhenhong, MULLER J P, CROSSP, et al. Interferometric synthetic aperture radar (InSAR) atmospheric correction: GPS, moderate resolution imaging spectroradiometer (MODIS), and InSAR integration[J]. Journal of Geophysical Research: Solid Earth,2005, 110(B3): B03410. [62] DING Xiaoli, LI Zhiwei, ZHU Jianjun, et al. Atmospheric effects on InSAR measurements and their mitigation[J]. Sensors,2008, 8(9): 5426-5448. [63] LI Zhenhong, FIELDING E J, CROSS P, et al. Interferometric synthetic aperture radar atmospheric correction: medium resolution imaging spectrometer and advanced synthetic aperture radar integration[J]. Geophysical Research Letters,2006, 33(6): L06816. [64] JOLIVET R, GRANDIN R, LASSERRE C, et al. Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data[J]. Geophysical Research Letters, 2011, 38(17): L17311. [65] KIRUI P K, REINOSCH E, ISYA N, et al. Mitigation of atmospheric artefacts in multi temporal InSAR: a review[J]. PFG-Journal of Photogrammetry, Remote Sensing and Geoinformation Science,2021, 89(3): 251-272. [66] GONG Wenyu, MEYER F J, LIU Shizhuo, et al. Temporal filtering of InSAR data using statistical parameters from NWP models[J]. IEEE Transactions on Geoscience and Remote Sensing,2015, 53(7): 4033-4044. [67] BEKAERT D P S, HOOPER A, WRIGHT T J. A spatially variable power law tropospheric correction technique for InSAR data[J]. Journal of Geophysical Research: Solid Earth,2015, 120(2): 1345-1356. [68] BEKAERT D P S, WALTERS R J, WRIGHT T W, et al. Statistical comparison of InSAR tropospheric correction techniques[J]. Remote Sensing of Environment,2015, 170: 40-47. [69] SHEN Lin, HOOPER A, ELLIOTT J. A spatially varying scaling method for InSAR tropospheric corrections using a high-resolution weather model[J]. Journal of Geophysical Research: Solid Earth,2019, 124(4): 4051-4068. [70] HU Zhongbo, MALLORQUÍ J J, FAN Hongdong, et al. Atmospheric artifacts correction with a covariance-weighted linear model over mountainous regions[J]. IEEE Transactions on Geoscience and Remote Sensing,2018, 56(12): 6995-7008. [71] LIANG Hongyu, ZHANG Lei, DING Xiaoli, et al. Toward mitigating stratified tropospheric delays in multitemporal InSAR: a quadtree aided joint model[J]. IEEE Transactions on Geoscience and Remote Sensing,2019, 57(1): 291-303. [72] MAUBANT L, PATHIER E, DAOUT S, et al. Independent component analysis and parametric approach for source separation in InSAR time series at regional scale: application to the 2017—2018 slow slip event in Guerrero (Mexico)[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(3): e2019JB018187. [73] HYVARINEN A. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Transactions on Neural Networks, 1999, 10(3): 626-634. [74] EBMEIER S K. Application of independent component analysis to multitemporal InSAR data with volcanic case studies[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(12): 8970-8986. [75] COHEN-WAEBER J, BÜRGMANN R, CHAUSSARD E, et al. Spatiotemporal patterns of precipitation-modulated landslide deformation from independent component analysis of InSAR time series[J]. Geophysical Research Letters, 2018, 45(4): 1878-1887. [76] LIANG Hongyu, ZHANG Lei, LU Zhong, et al. Nonparametric estimation of DEM error in multitemporal InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 10004-10014. [77] HU J J, LI Zhiwei, DING Xiaoli, et al. Resolving three-dimensional surface displacements from InSAR measurements: a review[J]. Earth-Science Reviews, 2014, 133: 1-17. [78] 王志伟. 基于多源InSAR数据的三维地表形变解算方法研究[J]. 测绘学报, 2019, 48(9): 1206. DOI:10.11947/j.AGCS.2019.20180490. WANG Zhiwei. Research on resolving of three-dimensional displacement from multi-source InSAR data[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1206.DOI:10.11947/j.AGCS.2019.20180490. [79] MICHEL R, AVOUAC J P, TABOURY J. Measuring near field coseismic displacements from SAR images: application to the Landers earthquake[J]. Geophysical Research Letters, 1999, 26(19): 3017-3020. [80] RAUCOULES D, DE MICHELE M, MALET J P, et al. Time-variable 3D ground displacements from high-resolution synthetic aperture radar (SAR). application to La Valette landslide (South French Alps)[J]. Remote Sensing of Environment, 2013, 139: 198-204. [81] SHI Xuguo, ZHANG Lu, BALZ T, et al. Landslide deformation monitoring using point-like target offset tracking with multi-mode high-resolution TerraSAR-X data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105: 128-140. [82] CAI Jiehua, WANG Changcheng, MAO Xiaokang, et al. An adaptive offset tracking method with SAR images for landslide displacement monitoring[J]. Remote Sensing, 2017, 9(8): 830. [83] 陈强, 罗容, 杨莹辉, 等. 利用SAR影像配准偏移量提取地表形变的方法与误差分析[J]. 测绘学报, 2015, 44(3): 301-308. DOI: 10.11947/j.AGCS.2015.20130782. CHEN Qiang, LUO Rong, YANG Yinghui, et al. Method and accuracy of extracting surface deformation field from SAR image coregistration[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(3): 301-308.DOI: 10.11947/j.AGCS.2015.20130782. [84] JIA Hongying, WANG Yingjie, GE Daqing, et al. Improved offset tracking for predisaster deformation monitoring of the 2018 Jinsha River landslide (Tibet, China)[J]. Remote Sensing of Environment, 2020, 247: 111899. [85] HE Liming, WU Lixin, LIU Shanjun, et al. Mapping two-dimensional deformation field time-series of large slope by coupling DInSAR-SBAS with MAI-SBAS[J]. Remote Sensing, 2015, 7(9): 12440-12458. [86] LIU Xiaojie, ZHAO Chaoying, ZHANG Qin, et al. Heifangtai loess landslide type and failure mode analysis with ascending and descending Spot-mode TerraSAR-X datasets[J]. Landslides, 2019, 17(1): 205-215. [87] JOUGHIN I R, KWOK R, FAHNESTOCK M A. Interferometric estimation of three-dimensional ice-flow using ascending and descending passes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(1): 25-37. [88] SUN Qian, HU Jun, ZHANG Lei, et al. Towards slow-moving landslide monitoring by integrating multi-sensor InSAR time series datasets: the Zhouqu case study, China[J]. Remote Sensing, 2016, 8(11): 908. [89] HU Xie, LU Zhong, PIERSON T C, et al. Combining InSAR and GPS to determine transient movement and thickness of a seasonally active low-gradient translational landslide[J]. Geophysical Research Letters, 2018, 45(3): 1453-1462. [90] SAMSONOV S, DILLE A, DEWITTE O, et al. Satellite interferometry for mapping surface deformation time series in one, two and three dimensions: a new method illustrated on a slow-moving landslide[J]. Engineering Geology, 2020, 266: 105471. [91] 杜小平, 郭华东, 范湘涛, 等. 基于ICESat/GLAS数据的中国典型区域SRTM与ASTER GDEM高程精度评价[J]. 地球科学-中国地质大学学报, 2013, 38(4): 887-897. DU Xiaoping, GUO Huadong, FAN Xiangtao, et al. Vertical accuracy assessment of SRTM and ASTER GDEM over typical regions of China using ICESat/GLAS[J]. Earth Science-Journal of China University of Geosciences, 2013, 38(4): 887-897. [92] NAVARRO-SANCHEZ V D, LOPEZ-SANCHEZ J M, VICENTE-GUIJALBA F. A contribution of polarimetry to satellite differential SAR interferometry: increasing the number of pixel candidates[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(2): 276-280. [93] LEE J S, POTTIER E. Polarimetric radar imaging: from basics to applications[M]. Boca Raton: CRC Press, 2017. [94] WU Baolong, TONG Ling, CHEN Yan, et al. Improved SNR optimum method in POLDINSAR coherence optimization[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(7): 982-986. [95] WANG Guanya, XU Bing, LI Zhiwei, et al. A phase optimization method for DS-InSAR based on SKP decomposition from quad-polarized data[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 4008805. [96] 朱建军, 杨泽发, 李志伟. InSAR矿区地表三维形变监测与预计研究进展[J]. 测绘学报, 2019, 48(2): 135-144. DOI: 10.11947/j.AGCS.2019.20180188. ZHU Jianjun, YANG Zefa, LI Zhiwei. Recent progress in retrieving and predicting mining-induced 3D displace-ments using InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2): 135-144. DOI: 10.11947/j.AGCS.2019.20180188. [97] LIU Xiaoge, HU Jun, SUN Qian, et al. Deriving 3-D time-series ground deformations induced by underground fluid flows with InSAR: case study of Sebei gas fields, China[J]. Remote Sensing, 2017, 9(11): 1129. [98] HU Xie, BÜRGMANN R, FIELDING E J, et al. Internal kinematics of the Slumgullion landslide (USA) from high-resolution UAVSAR InSAR data[J]. Remote Sensing of Environment,2020, 251: 112057. [99] HANDWERGER A L, BOOTH A M, HUANG M H, et al. Inferring the subsurface geometry and strength of slow-moving landslides using 3-D velocity measurements from the NASA/JPL UAVSAR[J]. Journal of Geophysical Research: Earth Surface,2021, 126(3): e2020JF005898. [100] MONSERRAT O, MOYA J, LUZI G, et al. Non-interferometric GB-SAR measurement: application to the Vallcebre landslide (eastern Pyrenees, Spain)[J]. Natural Hazards and Earth System Sciences,2013, 13(7): 1873-1887. [101] NICO G, BORRELLI L, DI PASQUALE A, et al. Monitoring of an ancient landslide phenomenon by GBSAR technique in the Maierato town (Calabria, Italy)[M]//LOLLINO G, GIORDAN D, CROSTA G B, et al. Engineering Geology for Society and Territory. Cham:Springer,2015: 129-133. [102] JI Shunping, YU Dawen, SHEN Chaoyong, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020, 17(6): 1337-1352. [103] 巨袁臻, 许强, 金时超, 等. 使用深度学习方法实现黄土滑坡自动识别[J]. 武汉大学学报(信息科学版), 2020, 45(11): 1747-1755. JU Yuanzhen, XU Qiang, JIN Shichao, et al. Automatic object detection of loess landslide based on deep learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1747-1755. [104] 李强, 张景发. 高分三号卫星全极化SAR影像九寨沟地震滑坡普查[J]. 遥感学报, 2019, 23(5): 883-891. LI Qiang, ZHANG Jingfa. Investigation on earthquake-induced landslide in Jiuzhaigou using fully polarimetric GF-3 SAR images[J]. Journal of Remote Sensing, 2019, 23(5): 883-891. [105] KIM M, CHO K, PARK SE, et al. Development of landslide detection algorithm using fully polarimetric ALOS-2 SAR data[J]. Economic and Environmental Geology, 2019, 52(4): 313-322. [106] ANANTRASIRICHAI N, BIGGS J, ALBINO F, et al. Application of machine learning to classification of volcanic deformation in routinely generated InSAR data[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(8): 6592-6606. [107] MA P F, ZHANG F, LIN H. Prediction of InSAR time-series deformation using deep convolutional neural networks[J]. Remote Sensing Letters, 2020, 11(2): 137-145. [108] QU X D, YANG J, CHANG M. A deep learning model for concrete dam deformation prediction based on RS-LSTM[J]. Journal of Sensors, 2019, 2019: 4581672. [109] 刘青豪, 张永红, 邓敏, 等. 大范围地表沉降时序深度学习预测法[J]. 测绘学报, 2021, 50(3): 396-404. DOI: 10.11947/j.AGCS.2021.20200038. LIU Qinghao, ZHANG Yonghong, DENG Min, et al. Time series prediction method of large-scale surface subsidence based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(3): 396-404. DOI: 10.11947/j.AGCS.2021.20200038. [110] XING Yin, YUE Jianping, CHEN Chuang. Interval estimation of landslide displacement prediction based on time series decomposition and long short-term memory network[J]. IEEE Access, 2020, 8: 3187-3196. [111] ANSAR.A A, SUDHA S. Prediction of earthquake induced landslide using deep learning models[C]//Proceedings of the 5th International Conference on Computing, Communication and Security. Patna, India: IEEE, 2020: 1-6. [112] MENG Qingxiang, WANG Huanling, HE Mingjie, et al. Displacement prediction of water-induced landslides using a recurrent deep learning model[J]. European Journal of Environmental and Civil Engineering, 2020. DOI: 10.1080/19648189.2020.1763847. [113] WANG Jing, NIE Guigen, GAO Shengjun, et al. Landslide deformation prediction based on a GNSS time series analysis and recurrent neural network model[J]. Remote Sensing, 2021, 13(6): 1055. [114] 张勤, 赵超英, 陈雪蓉. 多源遥感地质灾害早期识别技术进展与发展趋势[J]. 测绘学报,2022,51(6):885-896. DOI: 10.11947/j.AGCS.2022.20220132. ZHANG Qin, ZHAO Chaoying, CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 885-896. DOI: 10.11947/j.AGCS.2022.20220132. |
[1] | 吴华意, 胡秋实, 李锐, 刘朝辉. 城市人口时空分布估计研究进展[J]. 测绘学报, 2022, 51(9): 1827-1847. |
[2] | 张涛, 朱建军, 付海强, 汪长城. 单基线TanDEM-X InSAR相干性反演森林高度[J]. 测绘学报, 2022, 51(9): 1931-1941. |
[3] | 张祖勋, 姜慧伟, 庞世燕, 胡翔云. 多时相遥感影像的变化检测研究现状与展望[J]. 测绘学报, 2022, 51(7): 1091-1107. |
[4] | 何秀凤, 高壮, 肖儒雅, 罗海滨, 贾东振, 章浙涛. InSAR与北斗/GNSS综合方法监测地表形变研究现状与展望[J]. 测绘学报, 2022, 51(7): 1338-1355. |
[5] | 许强, 朱星, 李为乐, 董秀军, 戴可人, 蒋亚楠, 陆会燕, 郭晨. “天-空-地”协同滑坡监测技术进展[J]. 测绘学报, 2022, 51(7): 1416-1436. |
[6] | 李振洪, 朱武, 余琛, 张勤, 张成龙, 刘振江, 张雪松, 陈博, 杜建涛, 宋闯, 韩炳权, 周佳薇. 雷达影像地表形变干涉测量的机遇、挑战与展望[J]. 测绘学报, 2022, 51(7): 1485-1519. |
[7] | 龚健雅, 宦麟茜, 郑先伟. 影像解译中的深度学习可解释性分析方法[J]. 测绘学报, 2022, 51(6): 873-884. |
[8] | 张勤, 赵超英, 陈雪蓉. 多源遥感地质灾害早期识别技术进展与发展趋势[J]. 测绘学报, 2022, 51(6): 885-896. |
[9] | 朱建军, 付海强, 汪长城. 极化干涉SAR地表覆盖层“穿透测绘”技术进展[J]. 测绘学报, 2022, 51(6): 983-995. |
[10] | 张勤, 白正伟, 黄观文, 杜源, 王铎. GNSS滑坡监测预警技术进展[J]. 测绘学报, 2022, 51(10): 1985-2000. |
[11] | 许强, 郭晨, 董秀军. 地质灾害航空遥感技术应用现状及展望[J]. 测绘学报, 2022, 51(10): 2020-2033. |
[12] | 刘纪平, 梁恩婕, 徐胜华, 刘猛猛, 王勇, 张福浩, 罗安. 顾及样本优化选择的多核支持向量机滑坡灾害易发性分析评价[J]. 测绘学报, 2022, 51(10): 2034-2045. |
[13] | 吴琼, 葛大庆, 于峻川, 张玲, 李曼, 刘斌, 王艳, 马燕妮, 刘宏娟. 广域滑坡灾害隐患InSAR显著性形变区深度学习识别技术[J]. 测绘学报, 2022, 51(10): 2046-2055. |
[14] | 黄海峰, 薛蓉花, 赵蓓蓓, 易武, 邓永煌, 董志鸿, 柳青, 易庆林, 张国栋. 孕灾机理与综合遥感结合的三峡库首顺层岩质滑坡隐患识别[J]. 测绘学报, 2022, 51(10): 2056-2068. |
[15] | 王国权, 鲍艳. 基于区域参考框架的GNSS滑坡监测[J]. 测绘学报, 2022, 51(10): 2107-2116. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||