测绘学报 ›› 2022, Vol. 51 ›› Issue (10): 2020-2033.doi: 10.11947/j.AGCS.2022.20220302
许强1, 郭晨1,2, 董秀军1
收稿日期:
2022-05-05
修回日期:
2022-07-11
发布日期:
2022-11-05
作者简介:
许强(1968—),男,博士,教授,研究方向为地质灾害防治理论与方法研究。E-mail:xuqiang_68@126.com
基金资助:
XU Qiang1, GUO Chen1,2, DONG Xiujun1
Received:
2022-05-05
Revised:
2022-07-11
Published:
2022-11-05
Supported by:
摘要: 我国地质灾害发生十分频繁,因灾损失尤为严重,近年来发生的多起重大地质灾害事件表明高植被覆盖山区,以及一些受地形条件限制人迹罕至区域的地质灾害防治工作仍是传统群测群防的难题。航空遥感技术因其独特视场角、机动灵活等优势可快速高效地揭示地质灾害的空间分布特征和时空演化规律,在地质灾害调查评价、应急响应等方面发挥了重要作用。本文在简要概述航空遥感技术、平台及传感器的基础上,系统总结了国内外航空遥感在地质灾害识别解译、调查评价、长期监测、应急响应、VR展示等方面的研究应用,阐述了目前地质灾害航空遥感应用所面临的机遇和挑战,并对航空遥感在地质灾害应用研究的发展趋势做出了展望。
中图分类号:
许强, 郭晨, 董秀军. 地质灾害航空遥感技术应用现状及展望[J]. 测绘学报, 2022, 51(10): 2020-2033.
XU Qiang, GUO Chen, DONG Xiujun. Application status and prospect of aerial remote sensing technology for geohazards[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2020-2033.
[1] TOFANI V, SEGONI S, AGOSTINI A, et al. Technical note: use of remote sensing for landslide studies in Europe[J].Natural Hazards and Earth System Science, 2013, 13(170): 299-309. [2] 李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报(信息科学版), 2014, 39(5): 505-513,540. LI Deren, LI Ming. Research advance and application prospect of unmanned aerial vehicle remote sensing system[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 505-513,540. [3] 廖小罕, 肖青, 张颢. 无人机遥感:大众化与拓展应用发展趋势[J]. 遥感学报, 2019, 23(6): 1046-1052. LIAO Xiaohan, XIAO Qing, ZHANG Hao. UAV remote sensing: Popularization and expand application development trend[J]. Journal of Remote Sensing, 2019, 23(6): 1046-1052. [4] 朱庆, 曾浩炜, 丁雨淋, 等. 重大滑坡隐患分析方法综述[J]. 测绘学报, 2019, 48(12): 1551-1561. DOI: 10.11947/j.AGCS.2019.20190452. ZHU Qing, ZENG Haowei, DING Yulin, et al. A review of major potential landslide hazards analysis[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1551-1561. DOI: 10.11947/j.AGCS.2019.20190452. [5] GORUM T, FAN Xuanmei, VAN WESTEN C J, et al. Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake[J]. Geomorphology, 2011, 133(3/4): 152-167. [6] VALKANIOTIS S, PAPATHANASSIOU G, GANAS A. Mapping an earthquake-induced landslide based on UAV imagery; case study of the 2015 Okeanos landslide, Lefkada, Greece[J]. Engineering Geology, 2018, 245: 141-152. [7] 李强, 张景发, 罗毅, 等. 2017年“8·8”九寨沟地震滑坡自动识别与空间分布特征[J]. 遥感学报, 2019, 23(4): 785-795. LI Qiang, ZHANG Jingfa, LUO Yi, et al. Recognition of earthquake-induced landslide and spatial distribution patterns triggered by the Jiuzhaigou earthquake in August 8, 2017[J]. Journal of Remote Sensing, 2019, 23(4): 785-795. [8] 彭大雷, 许强, 董秀军, 等. 基于高精度低空摄影测量的黄土滑坡精细测绘[J]. 工程地质学报, 2017, 25(2): 424-435. PENG Dalei, XU Qiang, DONG Xiujun, et al. Accurate and efficient method for loess landslide fine mapping with high resolution close-range photogrammetry[J]. Journal of Engineering Geology, 2017, 25(2): 424-435. [9] COMERT R, AVDAN U, GORUM T, et al. Mapping of shallow landslides with object-based image analysis from unmanned aerial vehicle data[J]. Engineering Geology, 2019, 260: 105264. [10] DAI F C, LEE C F. A spatiotemporal probabilistic modelling of storm-induced shallow landsliding using aerial photographs and logistic regression[J]. Earth Surface Processes and Landforms, 2003, 28(5): 527-545. [11] MCKEAN J, ROERING J. Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry[J]. Geomorphology, 2004, 57(3/4): 331-351. [12] COMERT R, AVDAN U, GORUM T, et al. Mapping of shallow landslides with object-based image analysis from unmanned aerial vehicle data[J]. Engineering Geology, 2019, 260: 105264. [13] GÖRÜM T. Landslide recognition and mapping in a mixed forest environment from airborne LiDAR data[J]. Engineering Geology, 2019, 258: 105155. [14] LI Xianju, CHENG Xinwen, CHEN Weitao, et al. Identification of forested landslides using LiDAR data, object-based image analysis, and machine learning algorithms[J]. Remote Sensing, 2015, 7(8): 9705-9726. [15] 董秀军, 许强, 佘金星, 等. 九寨沟核心景区多源遥感数据地质灾害解译初探[J]. 武汉大学学报(信息科学版), 2020, 45(3): 432-441. DONG Xiujun, XU Qiang, SHE Jinxing, et al. Preliminary study on interpretation of geological hazards in Jiuzhaigou based on multi-source remote sensing data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 432-441. [16] 许强. 对地质灾害隐患早期识别相关问题的认识与思考[J]. 武汉大学学报(信息科学版), 2020, 45(11): 1651-1659. XU Qiang. Understanding and consideration of related issues in early identification of potential geohazards[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1651-1659. [17] NIETHAMMER U, JAMES M R, ROTHMUND S, et al. UAV-based remote sensing of the Super-Sauze landslide: evaluation and results[J]. Engineering Geology, 2012, 128: 2-11. [18] PENG Dalei, XU Qiang, QI Xing, et al. Study on early recognition of loess landslides based on field investigation[J]. International Journal of Geohazards and Environment, 2016, 2(2): 35-52. [19] LI Weile, ZHAO Bo, XU Qiang, et al. Deformation characteristics and failure mechanism of a reactivated landslide in Leidashi, Sichuan, China, on August 6, 2019: an emergency investigation report[J]. Landslides, 2020, 17(6): 1405-1413. [20] VAN WESTEN C J, LULIE GETAHUN F. Analyzing the evolution of the Tessina landslide using aerial photographs and digital elevation models[J]. Geomorphology, 2003, 54(1/2): 77-89. [21] BALTSAVIAS E P. Airborne laser scanning: basic relations and formulas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2/3): 199-214. [22] ARDIZZONE F, CARDINALI M, GALLI M, et al. Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne LiDAR[J]. Natural Hazards and Earth System Science, 2007, 7(6): 637-650. [23] BRIDEAU M A, STURZENEGGER M, STEAD D, et al. Stability analysis of the 2007 Chehalis Lake landslide based on long-range terrestrial photogrammetry and airborne LiDAR data[J]. Landslides, 2012, 9(1): 75-91. [24] ROERING J J, MACKEY B H, MARSHALL J A, et al. “You are here”: connecting the dots with airborne LiDAR for geomorphic fieldwork[J]. Geomorphology, 2013, 200: 172-183. [25] DEWITTE O, JASSELETTE J C, CORNET Y, et al. Tracking landslide displacements by multi-temporal DTMs: a combined aerial stereophotogrammetric and LiDAR approach in western Belgium[J]. Engineering Geology, 2008, 99(1/2): 11-22. [26] BALDO M, BICOCCHI C, CHIOCCHINI U, et al.LiDAR monitoring of mass wasting processes: the Radicofani landslide, Province of Siena, Central Italy[J]. Geomorphology, 2009, 105(3/4): 193-201. [27] JABOYEDOFF M, METZGER R, OPPIKOFER T, et al. New insight techniques to analyze rock-slope relief using DEM and 3D-imaging cloud points: COLTOP-3D software[C]//Proceedings of the 1st Canada-US Rock Mechanics Symposium-Rock Mechanics Meeting Society's Challenges and Demands. [s.n.]: Taylor & Francis, 2007: 61-68. [28] DONG Xiujun, XU Qiang, HUANG Runqiu, et al. Reconstruction of surficial rock blocks by means of rock structure modelling of 3D TLS point clouds: the 2013 Long-Chang rockfall[J]. Rock Mechanics and Rock Engineering, 2020, 53(2): 671-689. [29] FIRPO G, SALVINI R, FRANCIONI M, et al. Use of digital terrestrial photogrammetry in rocky slope stability analysis by distinct elements numerical methods[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(7): 1045-1054. [30] GORSEVSKI P V, BROWN M K, PANTER K, et al. Landslide detection and susceptibility mapping using LiDAR and an artificial neural network approach: a case study in the Cuyahoga Valley National Park, Ohio[J]. Landslides, 2016, 13(3): 467-484. [31] ABDULWAHID W M, PRADHAN B. Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR)[J]. Landslides, 2017, 14(3): 1057-1076. [32] ZHANG Y, MENG X M, DIJKSTRA T A, et al. Forecasting the magnitude of potential landslides based on InSAR techniques[J]. Remote Sensing of Environment, 2020, 241: 111738. [33] 张勤, 黄观文, 杨成生. 地质灾害监测预警中的精密空间对地观测技术[J]. 测绘学报, 2017, 46(10): 1300-1307. DOI: 10.11947/j.AGCS.2017.20170453. ZHANG Qin, HUANG Guanwen, YANG Chengsheng. Precision space observation technique for geological hazard monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1300-1307.DOI: 10.11947/j.AGCS.2017.20170453. [34] BOOTH A M, MCCARLEY J C, NELSON J. Multi-year, three-dimensional landslide surface deformation from repeat LiDAR and response to precipitation: mill Gulch earthflow, California[J]. Landslides, 2020, 17(6): 1283-1296. [35] LATO M J, ANDERSON S, PORTER M J. Reducing landslide risk using airborne LiDAR scanning data[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 1-8. [36] PETERNEL T, KUMELJ Š, OŠTIR K, et al. Monitoring the Potoška planina landslide (NW Slovenia) using UAV photogrammetry and tachymetric measurements[J]. Landslides, 2017, 14(1): 395-406. [37] LUCIEER A, DE JONG S M, TURNER D. Mapping landslide displacements using structure from motion (SfM) and image correlation of multi-temporal UAV photography[J]. Progress in Physical Geography: Earth and Environment, 2014, 38(1): 97-116. [38] 巨袁臻. 基于无人机摄影测量技术的黄土滑坡早期识别研究: 以黑方台为例[D]. 成都: 成都理工大学, 2017. JU Yuanzhen. Early recognition of loess landslide based on UAV photogrammetry: a case study of Heifang Terrace[D]. Chengdu: Chengdu University of Technology, 2017. [39] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10): 1717-1733.DOI: 10.11947/j.AGCS.2017.20170350. ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717-1733.DOI: 10.11947/j.AGCS.2017.20170350. [40] 蒋亚楠. 地质灾害监测中的SAR变形观测、解译与数据同化研究[J]. 测绘学报, 2018, 47(10): 1425. DOI: 10.11947/j.AGCS.2017.20170350. JIANG Yanan. SAR deformation measurement, interpretation and data assimilation in geological disaster monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(10): 1425. DOI: 10.11947/j.AGCS.2017.20170350. [41] 李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策[J]. 武汉大学学报(信息科学版), 2019, 44(7): 967-979. LI Zhenhong, SONG Chuang, YU Chen, et al. Application of satellite radar remote sensing to landslide detection and monitoring: challenges and solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 967-979. [42] DELBRIDGE B, BÜRGMANN R, FIELDING E, et al. Kinematics of the slumgullion landslide from UAVSAR derived interferograms[C]//Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium. Milan, Italy:IEEE,2015:3842-3845. [43] WANG Changcheng, CAI Jiehua, LI Zhiwei, et al. Kinematic parameter inversion of the slumgullion landslide using the time series offset tracking method with UAVSAR data[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(9): 8110-8124. [44] TRAVELLETTI J, DELACOURT C, ALLEMAND P, et al. Correlation of multi-temporal ground-based optical images for landslide monitoring: application, potential and limitations[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 70: 39-55. [45] PELLICANI R, ARGENTIERO I, MANZARI P, et al. UAV and airborne LiDAR data for interpreting kinematic evolution of landslide movements: the case study of the Montescaglioso landslide (southern Italy)[J]. Geosciences, 2019, 9(6):248. [46] 张祖勋, 郭大海, 柯涛, 等. 抗震救灾中航空摄影测量的应急响应[J]. 遥感学报, 2008,12(6): 852-857. ZHANG Zuxun, GUO Dahai, KE Tao, et al. The use of aerial photogrammetry in the fast response for China earthquake rescue[J]. Journal of Remote Sensing, 2008,12(6): 852-857. [47] 晏磊, 廖小罕, 周成虎, 等. 中国无人机遥感技术突破与产业发展综述[J]. 地球信息科学学报, 2019, 21(4): 476-495. YAN Lei, LIAO Xiaohan, ZHOU Chenghu, et al. The impact of UAV remote sensing technology on the industrial development of China: a review[J]. Journal of Geo-Information Science, 2019, 21(4): 476-495. [48] 李麒崙, 张万昌, 易亚宁. 地震滑坡信息提取方法研究: 以2017年九寨沟地震为例[J]. 中国科学院大学学报, 2020, 37(1): 93-102. LI Qilun, ZHANG Wanchang, YI Yaning. An information extraction method of earthquake-induced landslide: a case study of the Jiuzhaigou earthquake in 2017[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(1): 93-102. [49] 许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报, 2018, 26(6): 1534-1551. XU Qiang, ZHENG Guang, LI Weile, et al. Study on successive landslide damming events of Jinsha River in Baige village on Octorber 11 and November 3, 2018[J]. Journal of Engineering Geology, 2018, 26(6): 1534-1551. [50] 许强, 李为乐, 董秀军, 等. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J]. 岩石力学与工程学报, 2017, 36(11): 2612-2628. XU Qiang, LI Weile, DONG Xiujun, et al. The Xinmocun landslide on June 24, 2017 in Maoxian, Sichuan: characteristics and failure mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 2612-2628. [51] ZHAO Weihua, WANG Rui, LIU Xiuwei, et al. Field survey of a catastrophic high-speed long-runout landslide in Jichang town, Shuicheng county, Guizhou, China, on July 23, 2019[J]. Landslides, 2020, 17(6): 1415-1427. [52] 胡亚, 朱军, 李维炼, 等. 移动VR洪水灾害场景构建优化与交互方法[J]. 测绘学报, 2018, 47(8): 1123-1132.DOI: 10.11947/j.AGCS.2018.20180114. HU Ya, ZHU Jun, LI Weilian, et al. A construction optimization and interaction method for flood disaster scenes based on mobile VR[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(8): 1123-1132.DOI: 10.11947/j.AGCS.2018.20180114. [53] KELLOGG L H, BAWDEN G W, BERNARDIN T, et al. Interactive visualization to advance earthquake simulation[J]. Pure and Applied Geophysics, 2008, 165(3): 621-633. [54] COWGILL E, BERNARDIN T S, OSKIN M E, et al. Interactive terrain visualization enables virtual field work during rapid scientific response to the 2010 Haiti earthquake[J]. Geosphere, 2012, 8(4): 787-804. [55] 戴义. 泥石流灾害VR场景动态建模与交互查询可视化方法[D]. 成都: 西南交通大学, 2018. DAI Yi. VR scene dynamic modeling and interactive inquiry visualization method for debris flow disaster[D]. Chengdu: Southwest Jiaotong University, 2018. [56] 李维炼, 朱军, 朱秀丽, 等. 无人机遥感数据支持下滑坡VR场景探索分析方法[J]. 武汉大学学报(信息科学版), 2019, 44(7): 1065-1072. LI Weilian, ZHU Jun, ZHU Xiuli, et al. A exploratory analysis method of VR scene in landslide based on UAV remote sensing data[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1065-1072. [57] 张永军, 万一, 史文中, 等. 多源卫星影像的摄影测量遥感智能处理技术框架与初步实践[J]. 测绘学报, 2021, 50(8): 1068-1083.DOI: 10.11947/j.AGCS.2021.20210079. ZHANG Yongjun, WAN Yi, SHI Wenzhong, et al. Technical framework and preliminary practices of photogrammetric remote sensing intelligent processing of multi-source satellite images[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1068-1083.DOI: 10.11947/j.AGCS.2021.20210079. [58] 龚健雅. 人工智能时代测绘遥感技术的发展机遇与挑战[J]. 武汉大学学报(信息科学版), 2018, 43(12): 1788-1796. GONG Jianya. Chances and challenges for development of surveying and remote sensing in the age of artificial intelligence[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1788-1796. [59] JI Shunping, YU Dawen, SHEN Chaoyong, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020, 17(6): 1337-1352. [60] 张永生, 张振超, 童晓冲, 等. 地理空间智能研究进展和面临的若干挑战[J]. 测绘学报, 2021, 50(9): 1137-1146.DOI: 10.11947/j.AGCS.2021.20200420. ZHANG Yongsheng, ZHANG Zhenchao, TONG Xiaochong, et al. Progress and challenges of geospatial artificial intelligence[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1137-1146.DOI: 10.11947/j.AGCS.2021.20200420. [61] 张永军, 张祖勋, 龚健雅. 天空地多源遥感数据的广义摄影测量学[J]. 测绘学报, 2021, 50(1): 1-11.DOI: 10.11947/j.AGCS.2021.20200245. ZHANG Yongjun, ZHANG Zuxun, GONG Jianya. Generalized photogrammetry of spaceborne, airborne and terrestrial multi-source remote sensing datasets[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(1): 1-11.DOI: 10.11947/j.AGCS.2021.20200245. [62] 龚健雅, 季顺平. 摄影测量与深度学习[J]. 测绘学报, 2018, 47(6): 693-704.DOI: 10.11947/j.AGCS.2018.20170640. GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 693-704.DOI: 10.11947/j.AGCS.2018.20170640. |
[1] | 许强, 朱星, 李为乐, 董秀军, 戴可人, 蒋亚楠, 陆会燕, 郭晨. “天-空-地”协同滑坡监测技术进展[J]. 测绘学报, 2022, 51(7): 1416-1436. |
[2] | 张勤, 赵超英, 陈雪蓉. 多源遥感地质灾害早期识别技术进展与发展趋势[J]. 测绘学报, 2022, 51(6): 885-896. |
[3] | 李清泉, 黄惠, 姜三, 胡庆武, 于文率. 优视摄影测量方法及精度分析[J]. 测绘学报, 2022, 51(6): 996-1007. |
[4] | 唐晓芳, 詹总谦, 丁久婕, 刘佳辉, 熊子柔. 顾及超像素光谱特征的无人机影像自动模糊聚类分割法[J]. 测绘学报, 2022, 51(5): 677-690. |
[5] | 朱建军, 胡俊, 李志伟, 孙倩, 郑万基. InSAR滑坡监测研究进展[J]. 测绘学报, 2022, 51(10): 2001-2019. |
[6] | 吴琼, 葛大庆, 于峻川, 张玲, 李曼, 刘斌, 王艳, 马燕妮, 刘宏娟. 广域滑坡灾害隐患InSAR显著性形变区深度学习识别技术[J]. 测绘学报, 2022, 51(10): 2046-2055. |
[7] | 戴可人, 沈月, 吴明堂, 冯文凯, 董秀军, 卓冠晨, 易小宇. 联合InSAR与无人机航测的白鹤滩库区蓄水前地灾隐患广域识别[J]. 测绘学报, 2022, 51(10): 2069-2082. |
[8] | 王晨捷, 罗斌, 李成源, 王伟, 尹露, 赵青. 无人机视觉SLAM协同建图与导航[J]. 测绘学报, 2020, 49(6): 767-776. |
[9] | 朱建军, 杨泽发, 李志伟. InSAR矿区地表三维形变监测与预计研究进展[J]. 测绘学报, 2019, 48(2): 135-144. |
[10] | 姜尚洁, 罗斌, 贺鹏, 杨国鹏, 顾亚平, 刘军, 张云, 张良培. 利用无人机多源影像检测车辆速度[J]. 测绘学报, 2018, 47(9): 1228-1237. |
[11] | 熊艳, 高仁强, 徐战亚. 机载LiDAR点云数据降维与分类的随机森林方法[J]. 测绘学报, 2018, 47(4): 508-518. |
[12] | 张小东, 郝向阳, 孙国鹏, 徐亚丽. 旋翼无人机单目视觉障碍物径向光流检测法[J]. 测绘学报, 2017, 46(9): 1107-1115. |
[13] | 梁焕青, 谢意, 付四洲. 颜色不变量与AKAZE特征相结合的无人机影像匹配算法[J]. 测绘学报, 2017, 46(7): 900-909. |
[14] | 张勤, 黄观文, 杨成生. 地质灾害监测预警中的精密空间对地观测技术[J]. 测绘学报, 2017, 46(10): 1300-1307. |
[15] | 林祥国, 张继贤. 架空输电线路机载激光雷达点云电力线三维重建[J]. 测绘学报, 2016, 45(3): 347-353. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||