[1] 朱建军,李志伟,胡俊.InSAR变形监测方法与研究进展[J]. 测绘学报,2017,46(10):1717-1733. DOI: 10.11947/j.AGCS.2017.20170350. ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717-1733. DOI: 10.11947/j.AGCS.2017.20170350. [2] 赵超英, 刘晓杰, 张勤, 等. 甘肃黑方台黄土滑坡InSAR识别、监测与失稳模式研究[J]. 武汉大学学报(信息科学版), 2019, 44(7): 996-1007. ZHAO Chaoying, LIU Xiaojie, ZHANG Qin, et al. Research on loess landslide identification, monitoring and failure mode with InSAR technique in Heifangtai, Gansu[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 996-1007. [3] 白正伟, 张勤, 黄观文, 等. “轻终端+行业云”的实时北斗滑坡监测技术[J]. 测绘学报, 2019, 48(11): 1424-1429. DOI: 10.11947/j.AGCS.2019.20190167. BAI Zhengwei, ZHANG Qin, HUANG Guanwen, et al. Real-time BeiDou landslide monitoring technology of “light terminal plus industry cloud”[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1424-1429. DOI: 10.11947/j.AGCS.2019.20190167. [4] 李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用: 挑战与对策[J]. 武汉大学学报(信息科学版), 2019, 44(7): 967-979. LI Zhenhong, SONG Chuang, YU Chen, et al. Application of satellite radar remote sensing to landslide detection and monitoring: challenges and solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 967-979. [5] LIU Chun, LI Weiyue, WU Hangbin, et al. Susceptibility evaluation and mapping of China's landslides based on multi-source data[J]. Natural Hazards, 2013, 69(3): 1477-1495. [6] 刘璐瑶,高惠瑛.基于证据权与Logistic回归模型耦合的滑坡易发性评价[J/OL].工程地质学报:1-11[2022-10-26].DOI:10.13544/j.cnki.jeg.2020-482. LIU Luyao, GAO Huiying. Evaluation of the landslide susceptibility based on the coupling of the evidence weights and the Logistic regression model [J/OL]. Engineering Geological Journal: 1-11.[2022-10-26].DOI:10.13544/j.cnki.jeg.2020-482. [7] 胡燕, 李德营, 孟颂颂, 等. 基于证据权法的巴东县城滑坡灾害易发性评价[J]. 地质科技通报, 2020, 39(3): 187-194. HU Yan, LI Deying, MENG Songsong, et al. Landslide susceptibility evaluation in Badong county based on weights of evidence method[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 187-194. [8] 王佳佳, 殷坤龙, 肖莉丽. 基于GIS和信息量的滑坡灾害易发性评价——以三峡库区万州区为例[J]. 岩石力学与工程学报, 2014, 33(4): 797-808. WANG Jiajia, YIN Kunlong, XIAO Lili. Landslide susceptibility assessment based on GIS and weighted information value: a case study of Wanzhou district, Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(4): 797-808. [9] 李远远, 梅红波, 任晓杰, 等. 基于确定性系数和支持向量机的地质灾害易发性评价[J]. 地球信息科学学报, 2018, 20(12): 1699-1709. LI Yuanyuan, MEI Hongbo, REN Xiaojie, et al. Geological disaster susceptibility evaluation based on certainty factor and support vector machine[J]. Journal of Geo-Information Science, 2018, 20(12): 1699-1709. [10] LONG N, DE SMEDT F. Analysis and mapping of rainfall-induced landslide susceptibility in A Luoi district, Thua Thien Hue province, Vietnam[J]. Water, 2018, 11(1): 51. [11] WU Yanli, LI Wenping, WANG Qiqing, et al. Landslide susceptibility assessment using frequency ratio, statistical index and certainty factor models for the Gangu county, China[J]. Arabian Journal of Geosciences, 2016, 9(2): 1-16. [12] 张俊, 殷坤龙, 王佳佳, 等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报, 2016, 35(2): 284-296. ZHANG Jun, YIN Kunlong, WANG Jiajia, et al. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 284-296. [13] 田乃满, 兰恒星, 伍宇明, 等. 人工神经网络和决策树模型在滑坡易发性分析中的性能对比[J]. 地球信息科学学报, 2020, 22(12): 2304-2316. TIAN Naiman, LAN Hengxing, WU Yuming, et al. Performance comparison of BP artificial neural network and CART decision tree model in landslide susceptibility prediction[J]. Journal of Geo-Information Science, 2020, 22(12): 2304-2316. [14] 刘坚, 李树林, 陈涛. 基于优化随机森林模型的滑坡易发性评价[J]. 武汉大学学报(信息科学版), 2018, 43(7): 1085-1091. LIU Jian, LI Shulin, CHEN Tao. Landslide susceptibility assesment based on optimized random forest model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1085-1091. [15] 毛伊敏, 周昭飞, 彭喆, 等. 基于不确定多分类支持向量机在滑坡危险性预测的应用[J]. 江西理工大学学报, 2016, 37(3): 102-108. MAO Yimin, ZHOU Zhaofei, PENG Zhe, et al. Landslide hazard prediction based on uncertain multi-classification support vector machine method[J]. Journal of Jiangxi University of Science and Technology, 2016, 37(3): 102-108. [16] BENDAHMANE A, BENYETTOU A. Learning to generate optimized term weighting for web documents classification: a parallel mimetic approach based on support vector machines[J]. International Review on Computers and Software (IRECOS), 2016, 11(12): 1147. [17] GACHOKI P, MBURU M, MURAYA M. Predictive modelling of benign and malignant tumors using binary logistic, support vector machine and extreme gradient boosting models [J]. American Journal of Applied Mathematics and Statistics, 2019, 7(6): 196-204. [18] REICHENBACH P, ROSSI M, MALAMUD B D, et al. A review of statistically-based landslide susceptibility models[J]. Earth-Science Reviews, 2018, 180: 60-91. [19] HU Qiao, ZHOU Yi, WANG Shixing, et al. Machine learning and fractal theory models for landslide susceptibility mapping: case study from the Jinsha River basin[J]. Geomorphology, 2020, 351: 106975. [20] 徐胜华, 刘纪平, 王想红, 等. 熵指数融入支持向量机的滑坡灾害易发性评价方法——以陕西省为例[J]. 武汉大学学报(信息科学版), 2020, 45(8): 1214-1222. XU Shenghua, LIU Jiping, WANG Xianghong, et al. Landslide susceptibility assessment method incorporating index of entropy based on support vector machine: a case study of Shaanxi province[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1214-1222. [21] 林荣福, 刘纪平, 徐胜华, 等. 随机森林赋权信息量的滑坡易发性评价方法[J]. 测绘科学, 2020, 45(12): 131-138. LIN Rongfu, LIU Jiping, XU Shenghua, et al. Evaluation method of landslide susceptibility based on random forest weighted information[J]. Science of Surveying and Mapping, 2020, 45(12): 131-138. [22] LIU Mengmeng, LIU Jiping, XU Shenghua, et al. Landslide susceptibility mapping with the fusion of multi-feature SVM model based FCM sampling strategy: a case study from Shaanxi province[J]. International Journal of Image and Data Fusion, 2021, 12(4): 349-366. [23] FANG Zhice, WANG Yi, DUAN Hexiang, et al. Comparison of general kernel, multiple kernel, infinite ensemble and semi-supervised support vector machines for landslide susceptibility prediction[J]. Stochastic Environmental Research and Risk Assessment, 2022, 36(3): 1-22. [24] 易波琳. 大湘西地区滑坡地质灾害影响因素及形成机制分析[J]. 地球, 2016(11): 390-391. Yi Bolin. Analysis of influencing factors and formation mechanism of landslide geological disasters in Great Xiangxi region [J]. The Earth, 2016(11): 390-391. [25] 张福浩, 朱月月, 赵习枝, 等. 地理因子支持下的滑坡隐患点空间分布特征及识别研究[J]. 武汉大学学报(信息科学版), 2020, 45(8): 1233-1244. ZHANG Fuhao, ZHU Yueyue, ZHAO Xizhi, et al. Spatial distribution and identification of hidden danger points of landslides based on geographical factors[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1233-1244. [26] 刘璐瑶, 高惠瑛, 李照. 基于CF与Logistic回归模型耦合的永嘉县滑坡易发性评价[J]. 中国海洋大学学报(自然科学版), 2021, 51(10): 121-129. LIU Luyao, GAO Huiying, LI Zhao. Landslide susceptibility assessment based on coupling of CF model and logistic regression model in Yongjia county[J]. Periodical of Ocean University of China, 2021, 51(10): 121-129. [27] LEE Saro, HONG Soomin, JUNG Hyungsup. A support vector machine for landslide susceptibility mapping in Gangwon province, Korea[J]. Sustainability, 2017, 9(1): 48. [28] 孙德亮. 基于机器学习的滑坡易发性区划与降雨诱发滑坡预报预警研究[D]. 上海: 华东师范大学, 2019. SUN Deliang. Mapping landslide susceptibility based on machine learning and forecast warning of landslide induced by rainfall[D]. Shanghai: East China Normal University, 2019. [29] XU Shenghua, ZHANG Meng, MA Yu, et al. Multiclassification method of landslide risk assessment in consideration of disaster levels: a case study of Xianyang city, Shaanxi province[J]. ISPRS International Journal of Geo-Information, 2021, 10(10): 646. [30] 刘月, 王宁涛, 周超, 等. 基于ROC曲线与确定性系数法集成模型的三峡库区奉节县滑坡易发性评价[J]. 安全与环境工程, 2020, 27(4): 61-70. LIU Yue, WANG Ningtao, ZHOU Chao, et al. Evaluation of landslide susceptibility based on ROC and certainty factor method in Fengjie county, Three Gorges Reservoir[J]. Safety and Environmental Engineering, 2020, 27(4): 61-70. [31] CHEN Zhuo, LIANG Shouyun, KE Yutian, et al. Landslide susceptibility assessment using evidential belief function, certainty factor and frequency ratio model at Baxie River basin, NW China[J]. Geocarto International, 2019, 34(4): 348-367. [32] FAN Wen, WEI Xinsheng, CAO Yanbo, et al. Landslide susceptibility assessment using the certainty factor and analytic hierarchy process[J]. Journal of Mountain Science, 2017, 14(5): 906-925. [33] MAHAJAN S, RAINA A, GAO Xiaozhi, et al. Plant recognition using morphological feature extraction and transfer learning over SVM and AdaBoost[J]. Symmetry, 2021, 13(2): 356. [34] 陈军. 全极化SAR分类若干关键技术研究[D]. 徐州: 中国矿业大学, 2015. CHEN Jun. Research on some key techniques for fully polarimetric SAR image classification[D]. Xuzhou: China University of Mining and Technology, 2015. [35] 张宪法, 郝矿荣, 陈磊. 免疫多域特征融合的多核学习SVM运动想象脑电信号分类[J]. 自动化学报, 2020, 46(11): 2417-2426. ZHANG Xianfa, HAO Kuangrong, CHEN Lei. Motor imagery EEG classification based on immune multi-domain-feature fusion and multiple kernel learning SVM[J]. Acta Automatica Sinica, 2020, 46(11): 2417-2426. [36] 郭子正, 殷坤龙, 付圣, 等. 基于GIS与WOE-BP模型的滑坡易发性评价[J]. 地球科学, 2019, 44(12): 4299-4312. GUO Zizheng, YIN Kunlong, FU Sheng, et al. Evaluation of landslide susceptibility based on GIS and WOE-BP model[J]. Earth Science, 2019, 44(12): 4299-4312. [37] 张晓敏. 基于GIS的陕西省滑坡灾害危险性评价及分区研究[D]. 西安: 长安大学, 2019. ZHANG Xiaomin. Hazard assessment and zoning research of landslide in Shaanxi province based on GIS[D]. Xi'an: Changan University, 2019. [38] 闫举生, 谭建民. 基于不同因子分级法的滑坡易发性评价——以湖北远安县为例[J]. 中国地质灾害与防治学报, 2019, 30(1): 52-60. YAN Jusheng, TAN Jianmin. Landslide susceptibility assessment based on different factor classification methods: a case study in Yuan'an county of Hubei province[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(1): 52-60. [39] 武雪玲, 任福, 牛瑞卿. 多源数据支持下的三峡库区滑坡灾害空间智能预测[J]. 武汉大学学报(信息科学版), 2013, 38(8): 963-968. WU Xueling, REN Fu, NIU Ruiqing. Spatial intelligent prediction of landslide hazard based on multi-source data in Three Gorges Reservoir area[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 963-968. [40] 许强, 朱星, 李为乐, 等. “天-空-地”协同滑坡监测技术进展[J]. 测绘学报,2022,51(7):1416-1436. DOI: 10.11947/j.AGCS.2022.20220320. XU Qiang, ZHU Xing, LI Weile, et al. Technical progress of space-air-ground collaborative monitoring of landslide[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436. DOI: 10.11947/j.AGCS.2022.20220320. [41] 张勤, 赵超英, 陈雪蓉. 多源遥感地质灾害早期识别技术进展与发展趋势[J]. 测绘学报,2022,51(6):885-896. DOI: 10.11947/j.AGCS.2022.20220132. ZHANG Qin, ZHAO Chaoying, CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 885-896. DOI: 10.11947/j.AGCS.2022.20220132. |