[1] 朱建军, 丁晓利, 陈永奇. 集成地质、力学信息和监测数据的滑坡动态模型[J]. 测绘学报, 2003,32(3): 261-266. ZHU Jianjun, DING Xiaoli, CHEN Yongqi. Dynamic landsliding model with integration of monitoring information and mechanic information[J]. Acta Geodaetica et Cartographic Sinica, 2003,32(3): 261-266. [2] FERRETTI A, PRATI C, ROCCA F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2202-2212. [3] FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8-20. [4] LI Zhenhong, YU Chen, XIAO Ruya, et al. Entering a new era of InSAR: advanced techniques and emerging applications[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 1-4. [5] 李振洪, 朱武, 余琛, 等. 雷达影像地表形变干涉测量的机遇、挑战与展望[J]. 测绘学报,2022,51(7):1485-1519. DOI: 10.11947/j.AGCS.2022.20220224. LI Zhenhong, ZHU Wu, YU Chen, et al. Interferometric synthetic aperture radar for deformation mapping: opportunities, challenges and the outlook[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1485-1519. DOI: 10.11947/j.AGCS.2022.20220224. [6] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10): 1717-1733.DOI:10.11947/j.AGCS.2017.20170350. ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717-1733.DOI:10.11947/j.AGCS.2017.20170350. [7] LIU Guang, ZBIGNIEW P, STEFANO S, et al. Land surface displacement geohazards monitoring using multi-temporal InSAR techniques[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1): 77-87. [8] 张勤, 赵超英, 陈雪蓉. 多源遥感地质灾害早期识别技术进展与发展趋势[J]. 测绘学报,2022,51(6):885-896. DOI: 10.11947/j.AGCS.2022.20220132. ZHANG Qin, ZHAO Chaoying, CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 885-896. DOI: 10.11947/j.AGCS.2022.20220132. [9] 吴立新, 李佳, 苗则朗, 等. 冰川流域孕灾环境及灾害的天空地协同智能监测模式与方向[J]. 测绘学报,2021,50(8):1109-1121. DOI: 10.11947/j.AGCS.2021.20210107. WU Lixin, LI Jia, MIAO Zelang, et al. Pattern and directions of spaceborne-airborne-ground collaborated intelligent monitoring on the geo-hazards developing environment and disasters in glacial basin[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1109-1121. DOI: 10.11947/j.AGCS.2021.20210107. [10] 张勤, 黄观文, 杨成生. 地质灾害监测预警中的精密空间对地观测技术[J]. 测绘学报, 2017, 46(10): 1300-1307.DOI:10.11947/j.AGCS. 2017.20170453. ZHANG Qin, HUANG Guanwen, YANG Chengsheng. Precision space observation technique for geological hazard monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1300-1307.DOI:10.11947/j.AGCS. 2017.20170453. [11] 朱庆, 曾浩炜, 丁雨淋, 等. 重大滑坡隐患分析方法综述[J]. 测绘学报,2019,48(12):1551-1561. DOI: 10.11947/j.AGCS.2019.20190452. ZHU Qing, ZENG Haowei, DING Yulin, et al. A review of major potential landslide hazards analysis[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1551-1561. DOI: 10.11947/j.AGCS.2019.20190452. [12] 刘青豪, 张永红, 邓敏, 等. 大范围地表沉降时序深度学习预测法[J]. 测绘学报, 2021, 50(3): 396-404. DOI: 10.11947/j.AGCS.2021.20200038. LIU Qinghao, ZHANG Yonghong, DENG Min, et al. Time series prediction method of large-scale surface subsidence based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(3): 396-404. DOI: 10.11947/j.AGCS.2021.20200038. [13] ORESHKIN B N, CARPOV D, CHAPADOS N, et al.N-BEATS:neural basis expansion analysis for interpretable time series forecasting[J]. Statistics, 2019, 2: [14] JIANG Chuang, WANG Lei, YU Xuexiang, et al. Prediction of 3D deformation due to large gradient mining subsidence based on InSAR and constraints of IDPIM model[J]. International Journal of Remote Sensing, 2021, 42(1): 208-239. [15] YANG Zefa, LI Zhiwei, ZHU Jianjun, et al. An InSAR-based temporal probability integral method and its application for predicting mining-induced dynamic deformations and assessing progressive damage to surface buildings[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(2): 472-484. [16] XUE Feiyang, LÜ Xiaolei. Applying time series interferometric synthetic aperture radar and the unscented Kalman filter to predict deformations in Maoxian landslide [J]. Journal of Applied Remote Sensing, 2019, 13(1): 014509.doi: 10.1117/1.JRS.13.014509. [17] 陈银翠, 徐良骥, 余礼仁. 融合D-InSAR与GIS技术的矿区开采沉陷形变监测及预测方法[J]. 测绘通报, 2019(7): 54-58, 63. CHEN Yincui, XU Liangji, YU Liren. The method of mining subsidence deformation monitoring and prediction based on D-InSAR with GIS technology[J].Bulletin of Surveying and Mapping, 2019(7): 54-58, 63. [18] DENG Zeng, KE Yinghai, GONG Huili, et al. Land subsidence prediction in Beijing based on PS-InSAR technique and improved Grey-Markov model[J]. GIScience & Remote Sensing, 2017, 54(6): 797-818. [19] FUKUZONO T. New methods for predicting the failure time of a slope[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1987, 24(1): A34. [20] MORETTO S, BOZZANO F, ESPOSITO C, et al. Assessment of landslide pre-failure monitoring and forecasting using satellite SAR interferometry[J].Geosciences, 2017,7(2):36. [21] GHAREHDAGHI M, FAKHER A, CHESHOMI A. The combined use of long-term multi-sensor insar analysis and finite element simulation to predict land subsidence[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,2019, 5(2):421-427. [22] SHI Yun, LI Qianwen, MENG Xin, et al. On time-series InSAR by SA-SVR algorithm: prediction and analysis of mining subsidence[J]. Journal of Sensors, 2020,2020: 1-17. [23] 李金超, 高飞, 鲁加国, 等. 基于SBAS-InSAR和GM-SVR的居民区形变监测与预测[J]. 大地测量与地球动力学, 2019, 39(8): 837-842. LI Jinchao, GAO Fei, LU Jiaguo, et al. Deformation monitoring and prediction of residential areas based on SBAS-InSAR and GM-SVR[J]. Journal of Geodesy and Geodynamics, 2019, 39(8): 837-842. [24] 潘国荣, 谷川. 变形监测数据的小波神经网络预测方法[J]. 大地测量与地球动力学, 2007,27(4): 47-50. PAN Guorong, GU Chuan. Wavelet neural network prediction method of deformation monitoring data[J]. Journal of Geodesy and Geodynamics, 2007,27(4):47-50. [25] MA Peifeng, ZHANG Fan, LIN Hui. Prediction of InSAR time-series deformation using deep convolutional neural networks[J]. Remote Sensing Letters, 2020, 11(2): 137-145. [26] 陈兴权, 王解先, 谷川. 基于主成分分析的BP神经网络在形变预测中的应用[J]. 大地测量与地球动力学, 2008,28(3): 72-76. CHEN Xingquan, WANG Jiexian, GU Chuan. Application of BP neural network based on principal component analysis in deformation forecasting[J]. Journal of Geodesy and Geodynamics, 2008,28(3):72-76. [27] HILL P, BIGGS J, PONCE-LÓPEZ V, et al. Time-series prediction approaches to forecasting deformation in sentinel-1 InSAR data[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(3): e2020JB020176. [28] ZHANG Lei, DING Xiaoli, LU Zhong. Ground settlement monitoring based on temporarily coherent points between two SAR acquisitions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(1): 146-152. |