[1] 赵超英, 刘晓杰, 张勤, 等. 甘肃黑方台黄土滑坡InSAR识别、监测与失稳模式研究[J]. 武汉大学学报(信息科学版), 2019, 44(7): 996-1007. ZHAO Chaoying, LIU Xiaojie, ZHANG Qin, et al. Research on loess landslide identification, monitoring and failure mode with InSAR technique in Heifangtai, Gansu[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 996-1007. [2] LACROIX P, HANDWERGER A L, BIÈVRE G. Life and death of slow-moving landslides[J]. Nature Reviews Earth & Environment, 2020, 1(8): 404-419. [3] 韩军强. 高精度GNSS实时滑坡变形监测技术及环境建模分析研究[J]. 测绘学报, 2020, 49(3): 397. DOI: 10.11947/j.AGCS.2020.20190177. HAN Junqiang. Research on high precision GNSS real time landslide deformation monitoring technology and environmental modeling[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3): 397. DOI: 10.11947/j.AGCS.2020.20190177. [4] 白正伟, 张勤, 黄观文, 等. “轻终端+行业云”的实时北斗滑坡监测技术[J]. 测绘学报, 2019, 48(11): 1424-1429. DOI: 10.11947/j.AGCS.2019.20190167. BAI Zhengwei, ZHANG Qin, HUANG Guanwen, et al. Real-time BeiDou landslide monitoring technology of “light terminal plus industry cloud”[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1424-1429. DOI: 10.11947/j.AGCS.2019.20190167. [5] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10): 1717-1733. DOI: 10.11947/j.AGCS.2017.20170350. ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717-1733. DOI: 10.11947/j.AGCS.2017.20170350. [6] CARLÀ T, INTRIERI E, RASPINI F, et al. Perspectives on the prediction of catastrophic slope failures from satellite InSAR[J]. Scientific Reports, 2019, 9(1): 14137. [7] 吴立新, 李佳, 苗则朗, 等. 冰川流域孕灾环境及灾害的天空地协同智能监测模式与方向[J]. 测绘学报, 2021, 50(8): 1109-1121. DOI: 10.11947/j.AGCS.2021.20210107. WU Lixin, LI Jia, MIAO Zelang, et al. Pattern and directions of spaceborne-airborne-ground collaborated intelligent monitoring on the geo-hazards developing environment and disasters in glacial basin[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1109-1121. DOI: 10.11947/j.AGCS.2021.20210107. [8] 许强. 对地质灾害隐患早期识别相关问题的认识与思考[J]. 武汉大学学报(信息科学版), 2020, 45(11): 1651-1659. XU Qiang. Understanding and consideration of related issues in early identification of potential geohazards[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1651-1659. [9] 葛大庆, 戴可人, 郭兆成, 等. 重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J]. 武汉大学学报(信息科学版), 2019, 44(7): 949-956. GE Daqing, DAI Keren, GUO Zhaocheng, et al. Early identification of serious geological hazards with integrated remote sensing technologies: thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 949-956. [10] 朱庆, 曾浩炜, 丁雨淋, 等. 重大滑坡隐患分析方法综述[J]. 测绘学报, 2019, 48(12): 1551-1561. DOI: 10.11947/j.AGCS.2019.20190452. ZHU Qing, ZENG Haowei, DING Yulin, et al. A review of major potential landslide hazards analysis[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1551-1561. DOI: 10.11947/j.AGCS.2019.20190452. [11] 张路, 廖明生, 董杰, 等. 基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别: 以四川丹巴为例[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2039-2049. ZHANG Lu, LIAO Mingsheng, DONG Jie, et al. Early detection of landslide hazards in mountainous areas of West China using times series SAR interferometry: a case study of Danba, Sichuan[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2039-2049. [12] 李晓恩, 周亮, 苏奋振, 等. InSAR技术在滑坡灾害中的应用研究进展[J]. 遥感学报, 2021, 25(2): 614-629. LI Xiaoen, ZHOU Liang, SU Fenzhen, et al. Application of InSAR technology in landslide hazard: progress and prospects[J]. Journal of Remote Sensing, 2021, 25(2): 614-629. [13] BARRA A, SOLARI L, BÉJAR-PIZARRO M, et al. A methodology to detect and update active deformation areas based on Sentinel-1 SAR images[J]. Remote Sensing, 2017, 9(10): 1002. [14] SHI Xuguo, YANG Chao, ZHANG Lu, et al. Mapping and characterizing displacements of active loess slopes along the upstream Yellow River with multi-temporal InSAR datasets[J]. Science of the Total Environment, 2019, 674: 200-210. [15] BIANCHINI S, CIGNA F, RIGHINI G, et al. Landslide hotspot mapping by means of persistent scatterer interferometry[J]. Environmental Earth Sciences, 2012, 67(4): 1155-1172. [16] CALÒ F, ARDIZZONE F, CASTALDO R, et al. Enhanced landslide investigations through advanced DInSAR techniques: the Ivancich case study, Assisi, Italy[J]. Remote Sensing of Environment, 2014, 142: 69-82. [17] TOMÁS R, PAGÁN J I, NAVARRO J A, et al. Semi-automatic identification and pre-screening of geological-geotechnical deformational processes using persistent scatterer interferometry datasets[J]. Remote Sensing, 2019, 11(14): 1675. [18] DING Anzi, ZHANG Qingyong, ZHOU Xinmin, et al. Automatic recognition of landslide based on CNN and texture change detection[C]//Proceedings of the 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC). Wuhan: IEEE, 2016: 444-448. [19] YU Hong, MA Yi, WANG Longfei, et al. A landslide intelligent detection method based on CNN and RSG_R[C]//Proceedings of 2017 IEEE International Conference on Mechatronics and Automation (ICMA). Takamatsu, Japan: IEEE, 2017: 40-44. [20] GHORBANZADEH O, BLASCHKE T, GHOLAMNIA K, et al. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection[J]. Remote Sensing, 2019, 11(2): 196. [21] JI Shuping, YU Dawen, SHEN Chaoyong, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020, 17(6): 1337-1352. [22] QIN Shengwu, GUO Xu, SUN Jingbo, et al. Landslide detection from open satellite imagery using distant domain transfer learning[J]. Remote Sensing, 2021, 13(17): 3383. [23] SANDWELL D T, PRICE E J. Phase gradient approach to stacking interferograms[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30183-30204. [24] 沙永莲, 刘国祥, 王晓文, 等. 基于Stacking时序InSAR的北泉矿区沉陷监测[J]. 测绘科学技术, 2020, 8(2): 60-67. SHA Yonglian, LIU Guoxiang, WANG Xiaowen, et al. Ground subsidence detection of Beiquan mining area based on Stacking time-series InSAR[J]. InSAR Geomatics Science and Technology, 2020, 8(2): 60-67. [25] 王庆. 基于深度学习的遥感影像变化检测方法研究[D]. 武汉: 武汉大学, 2019. WANG Qing. Research on remote sensing imagery change detection method based on deep learning[D]. Wuhan: Wuhan University, 2019. [26] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, SO, USA: IEEE, 2014: 580-587. [27] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 1440-1448. [28] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6): 1137-1149. [29] HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017. [30] YU Bo, CHEN Fang, XU Chong. Landslide detection based on contour-based deep learning framework in case of national scale of Nepal in 2015[J]. Computers & Geosciences, 2020, 135: 104388. [31] 刘斌, 葛大庆, 王珊珊, 等. TOPS和ScanSAR模式InSAR在广域地灾隐患识别中的联合应用[J]. 武汉大学学报(信息科学版), 2020, 45(11): 109-115. LIU Bin, GE Daqing, WANG Shanshan, et al. Combining application of TOPS and ScanSAR InSAR in large-scale geohazards identification[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1756-1762. |