测绘学报 ›› 2022, Vol. 51 ›› Issue (10): 2046-2055.doi: 10.11947/j.AGCS.2022.20220303

• • 上一篇    下一篇

广域滑坡灾害隐患InSAR显著性形变区深度学习识别技术

吴琼, 葛大庆, 于峻川, 张玲, 李曼, 刘斌, 王艳, 马燕妮, 刘宏娟   

  1. 中国自然资源航空物探遥感中心,北京 100083
  • 收稿日期:2022-05-05 修回日期:2022-09-08 发布日期:2022-11-05
  • 通讯作者: 刘斌 E-mail:lbin0226@163.com
  • 作者简介:吴琼(1988—),女,博士,研究方向为LiDAR和InSAR技术理论与应用研究。E-mail:wuqiong_0108@126.com
  • 基金资助:
    国家重点研发计划(2021YFC3000400);地质灾害隐患综合遥感智能识别与应用示范(DD20211365);川东川南片区地质灾害隐患遥感识别监测(510201202076888)

Deep learning identification technology of InSAR significant deformation zone of potential landslide hazard at large scale

WU Qiong, GE Daqing, YU Junchuan, ZHANG Ling, LI Man, LIU Bin, WANG Yan, MA Yanni, LIU Hongjuan   

  1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
  • Received:2022-05-05 Revised:2022-09-08 Published:2022-11-05
  • Supported by:
    The National Key Research and Development Program of China (No. 2021YFC3000400); Based on Integrated Remote Sensing Intelligent Identification and Application Demonstration of Potential Geological Hazards (No. DD20211365); Remote Sensing Identification and Monitoring Project of Potential Geological Hazards in Eastern and Southern Sichuan (No. 510201202076888)

摘要: 全面识别和发现地质灾害隐患,已成为我国地质灾害防治的重大实际需求。目前,基于InSAR技术和深度学习相结合用于广域尺度下地质灾害隐患智能识别应用效果与适用性还需要进一步探索与研究。本文基于Stacking InSAR技术获得地表形变相位数据,利用深度学习检测识别正在变形的滑坡隐患位置与分布,确定显著性形变区边界,探索将上述技术方法推广到一定的广域范围和动态更新数据集。结果显示,测试数据集显著性形变区平均识别精度为0.69,召回率为0.67,F1 score为0.67,动态更新数据集识别精度为0.85,召回率为0.58,F1 score为0.68。研究表明,本文方法在广域地灾隐患识别中具有应用可行性,可为地质灾害监测预警提供理论基础与技术支撑。

关键词: 地质灾害隐患, 显著性形变区, 深度学习

Abstract: Comprehensive identification and discovery of potential landslide hazards has become a major practical demand of geological hazard prevention and control in China. At present, the application effect and applicability of the combination of InSAR technology and deep learning for the intelligent identification of geological hazards at large scale are still worthy of further exploration and research, this paper obtained the phase data of surface deformation based on stacking interferometric synthetic aperture radar (Stacking InSAR) technology, used deep learning to identify the location and distribution of the deforming landslide hazards, and determined the boundary of the significant deformation zone of potential landslide hazards. The above technical methods were exploratively applied to test and dynamic update data sets. The average identification precision, recall and F1 score value of the test data set were 0.69, 0.67 and 0.67, respectively. The identification precision, recall and F1 score value of the dynamic update data set were 0.85, 0.58 and 0.68, respectively. The results showed that the technical method used in this paper is feasible in the identification of potential landslide hazards in a wide area, and can provide theory and technical support for geological disaster monitoring and early warning.

Key words: potential landslide hazard, significant deformation zone, deep learning

中图分类号: