测绘学报 ›› 2021, Vol. 50 ›› Issue (8): 1033-1048.doi: 10.11947/j.AGCS.2021.20210072
李志林1,2, 刘万增3, 徐柱1, 遆鹏1, 高培超4, 闫超德5, 林艳6, 李然3, 陆辰妮3
收稿日期:
2021-02-04
修回日期:
2021-07-01
发布日期:
2021-08-24
通讯作者:
刘万增
E-mail:luwnzg@163.com
作者简介:
李志林(1960-),男,博士,教授,研究方向为制图学、GIS、遥感影像处理。
基金资助:
LI Zhilin1,2, LIU Wanzeng3, XU Zhu1, TI Peng1, GAO Peichao4, YAN Chaode5, LIN Yan6, LI Ran3, LU Chenni3
Received:
2021-02-04
Revised:
2021-07-01
Published:
2021-08-24
Supported by:
摘要: 海量时空大数据推动着地图制图的发展,同时也对时空大数据的地图表达提出了前所未有的挑战。本文通过分析时空数据的特性及其对地图表达的新需求,将时空数据地图表达面临的突出问题概括为基础理论数学化、地图设计定量化、地图表达自适化、质量预测模型化和制图应用泛在化。然后将这些问题归纳成3组,即地图制图基础理论、地图设计与可视化方法、泛在地图服务,并对相关研究进展进行综述与分析,并给出一些展望。
中图分类号:
李志林, 刘万增, 徐柱, 遆鹏, 高培超, 闫超德, 林艳, 李然, 陆辰妮. 时空数据地图表达的基本问题与研究进展[J]. 测绘学报, 2021, 50(8): 1033-1048.
LI Zhilin, LIU Wanzeng, XU Zhu, TI Peng, GAO Peichao, YAN Chaode, LIN Yan, LI Ran, LU Chenni. Cartographic representation of spatio-temporal data: fundamental issues and research progress[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1033-1048.
[1] 联合国欧洲经济委员会.让数据有意义:第二部分:统计数据展示指南[M]. 日内瓦:联合国, 2009:50. The United Nations Economic Commission for Europe. Making the data meaningful:Part 2:A guide to displaying statistics[M]. Geneva:United Nations, 2009:50. [2] 周成虎. 空间信息+的时代已经到来[C]//数字中国时空云起——2018空间信息软件技术大会.南京:[s.n.],2018. ZHOU Chenghu. The era of spatial information plus has arrived[C]//Time and Space Clouds in Digital China-2018 Space Information Software Technology Conference Report. Nanjing:[s.n.],2018. [3] 高俊. 图到用时方恨少, 重绘河山待后生:《测绘学报》60年纪念与前瞻[J]. 测绘学报, 2017, 46(10):1219-1225. DOI:10.11947/j.AGCS.2017.20170503. GAO Jun. The 60 anniversary and prospect of acta geodaetica et cartographica sinica[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1219-1225. DOI:10.11947/j.AGCS.2017.20170503. [4] 王家耀, 成毅. 论地图学的属性和地图的价值[J]. 测绘学报, 2015, 44(3):237-241.DOI:10.11947/j.AGCS.2015.20140406. WANG Jiayao, CHENG Yi. Discussions on the attributes of cartography and the value of map[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(3):237-241.DOI:10.11947/j.AGCS.2015.20140406. [5] 郭仁忠, 应申. 论ICT时代的地图学复兴[J]. 测绘学报, 2017, 46(10):1274-1283.DOI:10.11947/j.AGCS.2017.20170335. GUO Renzhong, YING Shen. The rejuvenation of cartography in ICT era[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1274-1283.DOI:10.11947/j.AGCS.2017.20170335. [6] 沈恩亚. 大数据可视化技术及应用[J]. 科技导报, 2020, 38(3):68-83. doi:10.3981/j.issn.1000-7857.2020.03.004. SHEN Enya. Big data visualization technology and applications[J]. Science & Technology Review, 2020, 38(3):68-83. DOI:10.3981/j.issn.1000-7857.2020.03.004. [7] 王家耀. 时空大数据时代的地图学[J]. 测绘学报, 2017, 46(10):1226-1237.DOI:10.11947/j.AGCS.2017.20170308. WANG Jiayao. Cartography in the age of spatio-temporal big data[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1226-1237.DOI:10.11947/j.AGCS.2017.20170308. [8] HEY T, TANSLEY S,TOLLE K. The fourth paradigm:data intensive scientific discovery[C]//Proceedings of the IEEE.[S.l.]:IEEE,2009, 99(8):1334-1337. [9] MORITA T. Theory and development of research in ubiquitous mapping[M]//Lecture Notes in Geoinformation and Cartography. Berlin, Heidelberg:Springer,2007:89-106. [10] 刘经南, 高柯夫. 智能时代测绘与位置服务领域的挑战与机遇[J]. 武汉大学学报 (信息科学版), 2017, 42(11):1506-1517. LIU Jingnan, GAO Kefu. Challenges and Opportunities for Mapping and Surveying and Challenges and Opportunities for Mapping and Surveying and[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11):1506-1517. [11] 李德仁, 马军, 邵振峰. 论时空大数据及其应用[J]. 卫星应用, 2015(9):7-11. LI Deren, MA Jun, SHAO Zhenfeng, On Spatio-temporal Big Data and Its Application[J]. Satellite Application, 2015, 9:7-11. [12] 吴军. 智能时代:大数据与智能革命重新定义未来[M]. 北京:中信出版集团. 2016. WU Jun.Intelligent era:big data and intelligent revolution redefine the future[M]. Beijing:China CITIC Press. 2016. [13] 郝晓光, 徐汉卿, 刘根友, 等. 系列世界地图[J]. 大地测量与地球动力学, 2003, 23(2):111-116. HAO Xiaoguang, XU Hanqing, LIU Genyou, et al. A series of world maps[J]. Crustal Deformation and Earthquake, 2003, 23(2):111-116. [14] 刘万增, 赵勇, 赵婷婷, 等. 公益性制图的基本问题与研究方向[J]. 测绘通报, 2019(9):115-117, 127. LIU Wanzeng, ZHAO Yong, ZHAO Tingting, et al. Basic problems and research directions on the public welfare mapping on-demand[J]. Bulletin of Surveying and Mapping, 2019(9):115-117, 127. [15] BICKMORE D P, BERTIN J. Sémiologie Graphique:les diagrammes, les réseaux, les cartes[J]. The Geographical Journal, 1969, 135(1):144. [16] ROBINSON A H, MORRISON J L, MUEHRCKE P C, et al. Perception and design[M]//Elements of Cartography. New Jersey:John Wiley & Sons, 1995, 313-338. [17] DIBIASE D, MACEACHREN A M, KRYGIER J B, et al. Animation and the role of map design in scientific visualization[J]. Cartography and Geographic Information Systems, 1992, 19(4):201-214. [18] MACEACHREN A M. Visualization in modern cartography:setting the agenda[M]//Visualization in Modern Cartography. Amsterdam:Elsevier, 1994:1-12. [19] LI Zhilin, KRAAK M. Web-based exploratory data analysis (Web-EDA):visualiation meets spatial analysis[C]//Proceedings of the ISPRS Commission Ⅱ Symposium.Xi'an, China:ISPRS,2002. [20] LI Zhilin. Word structures of map language:spatio-spectral structure of map symbols[C]//Invited Presentation, ICA Workshop on Theoretical Cartography and Geo-Information Science.Beijing,China:[s.n.]2014. [21] 张洪岩, 周成虎, 闾国年, 等. 试论地学信息图谱思想的内涵与传承[J]. 地球信息科学学报, 2020, 22(4):653-661. ZHANG Hongyan, ZHOU Chenghu, LÜ Guonian, et al. The connotation and inheritance of geo-information tupu[J]. Journal of Geo-Information Science, 2020, 22(4):653-661. [22] 王家耀. 空间数据自动综合研究进展及趋势分析[J]. 测绘科学技术学报, 2008, 25(1):1-7, 12. WANG Jiayao. The progress and trend of automatic generalization of spatial data[J]. Journal of Geomatics Science and Technology, 2008, 25(1):1-7, 12. [23] TÖPFER F, PILLEWIZER W. The principles of selection[J]. The Cartographic Journal, 1966, 3(1):10-16. [24] 王家耀, 李志林, 武芳. 数字地图综合进展[M]. 北京:科学出版社, 2011. WANG Jiayao, LI Zhilin, WU Fang. Advances in digital map generalization[M]. Beijing:Science Press, 2011. [25] LI Zhilin, SU Bo. From phenomena to essence:envisioning the nature of digital map generalisation[J]. The Cartographic Journal, 1995, 32(1):45-47. [26] LI Zhilin, OPENSHAW S. A natural principle for the objective generalization of digital maps[J]. Cartography and Geographic Information Systems, 1993, 20(1):19-29. [27] LI Zhilin. Transformation of Spatial Representation in Scale Dimension:A New Paradigm for Digital Generalization of Spatial Data[J]. International Archives of Photogrammetry and Remote Sensing, 1996, 31:453-458. [28] LI Zhilin. Algorithmic foundation of multi-scale spatial representation[M]. London:CRC Press (Taylor & Francis Group). 2007, 281. [29] RAPOSO P. Scale-specific automated line simplification by vertex clustering on a hexagonal tessellation[J]. Cartography and Geographic Information Science, 2013, 40(5):427-443. [30] KENT A J. Form follows feedback:rethinking cartographic communication[J]. Westminster Papers in Communication and Culture, 2018, 13(2):96-112. [31] MOLES A A. Théorie de l'information et message cartographique[J]. Sciences et Enseignement des Sciences, 1964, 5(32):11-16. [32] BOARD C. Maps as models[M]//CHORLEY R J, HAGGETT P. Models in Geography. London:Methuen. 1967:671-725. [33] KOLÁČNY'A. Cartographic information-a fundamental concept and term in modern cartography[J]. The Cartographic Journal, 1969, 6(1):47-49. [34] Keates J S. Cartographic information[C]//Proceedings of the Abstract of Paper Presented at the 20th International Geographical Congress.London:[s.n.]1964. [35] SUKHOV V I. Information capacity of a map entropy[J]. Geodesy and Aerophotography, 1967, 10(4):212-215. [36] LI Zhilin, HUANG Peizhi. Quantitative measures for spatial information of maps[J]. International Journal of Geographical Information Science, 2002, 16(7):699-709. [37] NEUMANN J. The topological information content of a map:an attempt at a rehabilitation of information theory in cartography[J]. Cartographica:The International Journal for Geographic Information and Geovisualization, 1994, 31(1):26-34. [38] 王少一, 王昭, 杜清运. 顾及地图要素级别的几何信息量量测方法[J]. 测绘科学, 2007, 32(4):60-62, 194. WANG Shaoyi, WANG Zhao, DU Qingyun. A measurement method of geometrical information considering multi-level map feature[J]. Science of Surveying and Mapping, 2007, 32(4):60-62, 194. [39] GAO Peichao,Li Zhilin,Zhang Hong. Thermodynamics-based evaluation of various improved shannon entropies for configurational information of gray-level images[J]. Entropy, 2018, 20(1):19. [40] CUSHMAN S A. Thermodynamics in landscape ecology:the importance of integrating measurement and modeling of landscape entropy[J]. Landscape Ecology, 2015, 30(1):7-10. [41] CUSHMAN S A. Calculating the configurational entropy of a landscape mosaic[J]. Landscape Ecology, 2016, 31(3):481-489. [42] VRANKEN I, BAUDRY J, AUBINET M, et al. A review on the use of entropy in landscape ecology:heterogeneity, unpredictability, scale dependence and their links with thermodynamics[J]. Landscape Ecology, 2015, 30(1):51-65. [43] Li Z L. Entropy for image quality measure:from Shannon back to Boltzmann[C]//Proceedings of the Keynote Speech at the International Workshop on Image and Data Fusion.Wuhan, China:Wuhan Unversity,2017. [44] BOLTZMANN L. Weitere Studienüber das Wärmegleichge wichtunter Gasmolekülen[M].[S.l.]:Kinetische Theorie Ⅱ. Vieweg+Teubner Verlag, 1970. [45] BAILEY K D. Entropy systems theory[M]//PARRA-LUNA F. Systems science and cybernetics. Oxford, UK:Eolss Publishers,2009:149-166. [46] DALARSSON N, DALARSSON M,GOLUBOVIC L. Introductory statistical thermodynamics[M]. Amsterdam, The Netherlands:Academic Press, 2011. [47] GAO Peichao, ZHANG Hong, LI Zhilin. A hierarchy-based solution to calculate the configurational entropy of landscape gradients[J]. Landscape Ecology, 2017, 32(6):1133-1146. [48] GAO Peichao,WANG Jicheng,ZHANG Hong,et al. Boltzmann entropy-based unsupervised band selection for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(3):462-466. [49] GAO Peichao, LI Zhilin. Computation of the Boltzmann entropy of a landscape:a review and a generalization[J]. Landscape Ecology, 2019, 34(9):2183-2196. [50] LI Zhilin; GAO Peichao;XU Zhu. Information theory of cartography:an information-theoretic framework for cartographic communication[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1):1-16. DOI:10. 11947/j.JGGS.2021.0101. [51] 孟丽秋. 视觉载负量的计量方法及其应用[J]. 测绘学院学报, 1985:53-63. MENG Liqiu. The quantitative methods of visual map loading and its application[J]. Journal of Geomatics Science and Technology, 1985:53-63. [52] 余建伟, 朱海红, 姜文亮, 等. 基于熵的彩色晕渲图设色方案辅助设计[J]. 武汉大学学报(信息科学版),2008, 33(3):302-305. YU Jianwei, ZHU Haihong, JIANG Wenliang, et al. Color design of the hill-shading map based on entropy[J]. Geomatics and Information Science of Wuhan University, 2008, 33(3):302-305. [53] BJØRKE J T. Exploration of information theoretic arguments for the limited amount of information in a map[J]. Cartography and Geographic Information Science, 2012, 39(2):88-97. [54] 王昭, 费立凡. 基于语法层的地图综合信息量原则[J]. 测绘科学, 2007, 32(6):21-23, 204. WANG Zhao, FEI Lifan. Syntax-based information quantity rule for automatic map generalization[J]. Science of Surveying and Mapping, 2007, 32(6):21-23, 204. [55] 田晶, 郭庆胜, 冯科, 等. 基于信息损失的街道渐进式选取方法[J]. 武汉大学学报(信息科学版), 2009, 34(3):362-365. TIAN Jing, GUO Qingsheng, FENG Ke, et al. Progressive selection approach of streets based on information loss[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3):362-365. [56] 田晶, 艾廷华. 街道渐进式选取的信息传输模型[J]. 武汉大学学报(信息科学版), 2010, 35(4):415-418. TIAN Jing, AI Tinghua. Communicative model for streets progressive selection[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4):415-418. [57] 刘万增, 陆辰妮, 霍亮, 等. 最优信息熵约束的居民地点状要素选取方法[J]. 武汉大学学报(信息科学版),2021,46(8):1123-1130. LIU Wanzeng, LU Chenni, HUO Liang, et al. Selection Method of Residential Point Features Constrained by Optimal Information Entropy[J]. Geomatics and Information Science of Wuhan University, 2021,46(8):1123-1130. [58] 王昭, 吴中恒, 费立凡, 等. 基于几何信息熵的面状要素注记配置[J]. 测绘学报, 2009, 38(2):183-188. WANG Zhao, WU Zhongheng, FEI Lifan, et al. Automatic name placement of area feature:a metric information approach[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(2):183-188. [59] 陈军, 闫超德, 赵仁亮, 等. 基于Voronoi邻近的移动地图自适应裁剪模型[J]. 测绘学报, 2009, 38(2):152-155, 161. CHEN Jun, YAN Chaode, ZHAO Renliang, et al. Voronoi neighbor-based self-adaptive clipping model for mobile maps[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(2):152-155, 161. [60] MONTELLO D R. Cognitive map-design research in the twentieth century:theoretical and empirical approaches[J]. Cartography and Geographic Information Science, 2002, 29(3):283-304. [61] 王英杰,陈毓芬,余卓渊,等.自适应地图可视化原理与方法[M].北京:科学出版社,2012. WANG Yingjie, CHEN Yufen, YU Zhuoyuan, et al. Principles and methods of adaptive map visualization[M]. Beijing:Science Press,2012. [62] PUSHPAK K, DAVID C, STEFAN J, et al. Route visualization using detail lenses[J]. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(2):235-247. [63] DUMONT M, TOUYA G, DUCHÊNE C. Designing multi-scale maps:lessons learned from existing practices[J]. International Journal of Cartography, 2020, 6(1):121-151. [64] CHEN Jun, HU Yungang, LI Zhilin, et al. Selective omission of road features based on mesh density for automatic map generalization[J]. International Journal of Geographical Information Science, 2009, 23(8):1013-1032. [65] LI Zhilin, ZHOU Qi. Integration of linear and areal hierarchies for continuous multi-scale representation of road networks[J]. International Journal of Geographical Information Science, 2012, 26(5):855-880. [66] BENZ S A,WEIBEL R. Road network selection for medium scales using an extended stroke-mesh combination algorithm[J]. Cartography & Geographic Information Science, 2014, 41 (4), 323-339. [67] YU Wenhao, ZHANG Yifan, AI Tinghua, et al. Road network generalization considering traffic flow patterns[J]. International Journal of Geographical Information Science, 2020, 34(1):119-149. [68] LI Zhilin, TI Peng. Adaptive generation of variable-scale network maps for small displays based on line density distribution[J]. GeoInformatica, 2015, 19(2):277-295. [69] TI Peng,LI Zhilin,XU Zhu,et al. Optimizing the balance between area and orientation distortions for variable-scale maps.[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117:237-242. [70] KADMON N, SHLOMI E. A polyfocal projection for statistical surfaces[J]. The Cartographic Journal, 1978, 15(1):36-41. [71] HARRIE L, SARJAKOSKI L T,LEHTO L. A Variable-scale Map for Small-display Cartography[C]//Proceedings of the Joint International Symposium on Geo-Spatial Theory. Ottawa, Canada:[s.n.]2002. [72] 艾廷华, 梁蕊. 导航电子地图的变比例尺可视化[J]. 武汉大学学报(信息科学版), 2007, 32(2):127-130. AI Tinghua, LIANG Rui. Variable-scale visualization in navigation electronic map[J]. Geomatics and Information Science of Wuhan University, 2007, 32(2):127-130. [73] HAUNERT J H, SERING L. Drawing road networks with focus regions[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12):2555-2562. [74] BARKOWSKY T, LATECKI L J, RICHTER K F. Schematizing maps:Simplification of geographic shape by discrete curve evolution[M]. Berlin, Heidelberg:Springer,2000. [75] 艾廷华. 适宜空间认知结果表达的地图形式[J]. 遥感学报, 2008, 12(2):347-354. AI Tinghua. Maps adaptable to represent spatial cognition[J]. Journal of Remote Sensing, 2008, 12(2):347-354. [76] WILSON D, BERTOLOTTO M,WEAKLIAM J. Personalizing map content to improve task completion efficiency[J]. International Journal of Geographical Information Science, 2010, 24(5):741-760. [77] NETZEL R, OHLHAUSEN B, KURZHALS K, et al. User performance and reading strategies for metro maps:an eye tracking study[J]. Spatial Cognition & Computation, 2017, 17(1/2):39-64. [78] AGRAWALA M, STOLTE C. Rendering effective route maps:improving usability through generalization[C]//SIGGRAPH '01:Proceedings of the 28th annual conference on Computer graphics and interactive techniques. 2001:241-249. [79] KOPF J, COHEN M, AGRAWALA M, et al. Automatic generation of destination maps[J]. ACM Transactions on Graphics, 2010, 29(6):1-12. [80] BERENDT B, BARKOWSKY T, FREKSA C,et al. Spatial representation with aspect maps[M]//Freksa C, Habel C, Wender, K F.Spatial Cognition-An Interdisciplinary Approach to Representing and Processing Spatial Knowledge. Berlin, Germany:Springer, 1998:313-336. [81] NIARAKI A S, KIM K. Ontology based personalized route planning system using a multi-criteria decision making approach[J]. Expert Systems With Applications, 2009, 36(2):2250-2259. [82] REICHENBACHER T.Mobile cartography:adaptive visualisation of geographic information on mobile devices[D]. München, Germany:Technische Universität München, 2004. [83] NIVALA A M, SARJAKOSKI L T. Adapting map symbols for mobile users[C]//Proceedings of the 22th International Cartographic Conference Mapping Approaches into a Changing World. A Coruña, Spain:[s.n.],2005. [84] 朱秀丽, 周治武, 李静, 等. 网络矢量地图瓦片技术研究[J]. 测绘通报, 2016(11):106-109, 117. ZHU Xiuli, ZHOU Zhiwu, LI Jing, et al. Research for web map vector tiles technology[J]. Bulletin of Surveying and Mapping, 2016(11):106-109, 117. [85] TÖPFER F, PILLEWIZER W. The principles of selection[J]. The Cartographic Journal, 1966, 3(1):10-16. [86] 王家耀, 李志林, 武芳. 数字地图综合进展[M]. 北京:科学出版社, 2011:40-50. WANG Jiayao, LI Zhilin, WU Fang. Advances in digital map generalization[M]. Beijing:Science Press, 2011:40-50. [87] 艾廷华, 何亚坤, 杜欣. GIS数据尺度变换中的信息熵变化[J]. 地理与地理信息科学, 2015, 31(2):7-11. AI Tinghua, HE Yakun, DU Xin. Information entropy change in GIS data scale transformation[J]. Geography and Geo-Information Science, 2015, 31(2):7-11. [88] TAN Shiteng, XU Zhu, TI Peng, et al. Morphology-based modeling of aggregation effect on the patch area size for GlobeLand30 data[J]. Transactions in GIS, 2018, 22(1):98-118. [89] 周启. 泛在网络制图的符号冲突处理研究[D].武汉:武汉大学,2014. ZHOU Qi.Research on Conflict Resolution of Map Symbols in Ubiquitous Mapping[D].Wuhan:Wuhan University,2014. [90] 刘经南, 郭文飞, 郭迟, 等. 智能时代泛在测绘的再思考[J]. 测绘学报, 2020, 49(4):403-414.DOI:10.11947/j.AGCS.2020.20190539. LIU Jingnan, GUO Wenfei, GUO Chi, et al. Rethinking ubiquitous mapping in the intelligent age[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4):403-414.DOI:10.11947/j.AGCS.2020.20190539. [91] 陆辰妮, 霍亮, 刘万增, 等. 支持空间数据的跨媒介电子文档研究[J]. 测绘科学, 2019, 44(3):159-164. LU Chenni, HUO Liang, LIU Wanzeng, et al. Research on cross-media electronic document supporting spatial data[J]. Science of Surveying and Mapping, 2019, 44(3):159-164. [92] 王家耀. 时空大数据时代的地图学[J]. 测绘学报, 2017, 46(10):1226-1237.DOI:10.11947/j.AGCS.2017.20170308. WANG Jiayao. Cartography in the age of spatio-temporal big data[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1226-1237.DOI:10.11947/j.AGCS.2017.20170308. [93] 郭仁忠, 陈业滨, 应申, 等. 三元空间下的泛地图可视化维度[J]. 武汉大学学报(信息科学版), 2018, 43(11):1603-1610. GUO Renzhong, CHEN Yebin, YING Shen, et al. Geographic Visualization of Pan-Map with the Context of Ternary Spaces[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11):1603-1610. [94] 周成虎, 朱欣焰, 王蒙, 等. 全息位置地图研究[J]. 地理科学进展, 2011, 30(11):1331-1335. ZHOU Chenghu, ZHU Xinyan, WANG Meng, et al. Panoramic location-based map[J]. Progress in Geography, 2011, 30(11):1331-1335. [95] 闾国年, 俞肇元, 袁林旺, 等. 地图学的未来是场景学吗?[J]. 地球信息科学学报, 2018, 20(1):1-6. LÜ Guonian, YU Zhaoyuan, YUAN Linwang, et al. Is the future of cartography the scenario science?[J]. Journal of Geo-Information Science, 2018, 20(1):1-6. |
[1] | 张烁, 陈丽平, 李铁映, 鄢咏折, 邓湘金, 顾征, 郑燕红, 马友青, 亓晨, 刘少创. 嫦娥五号探测器月面采样封装任务的定位精度[J]. 测绘学报, 2022, 51(5): 631-639. |
[2] | 唐晓芳, 詹总谦, 丁久婕, 刘佳辉, 熊子柔. 顾及超像素光谱特征的无人机影像自动模糊聚类分割法[J]. 测绘学报, 2022, 51(5): 677-690. |
[3] | 周宝定, 张文香, 黄金彩, 李清泉. 基于众源数据的室内外一体化行人路网构建[J]. 测绘学报, 2022, 51(5): 718-728. |
[4] | 王晨捷, 罗斌, 李成源, 王伟, 尹露, 赵青. 无人机视觉SLAM协同建图与导航[J]. 测绘学报, 2020, 49(6): 767-776. |
[5] | 王乐洋, 高华, 冯光财. 利用InSAR和GPS数据分析台湾西南两次Mw>6地震的触发关系及应力影响[J]. 测绘学报, 2019, 48(10): 1244-1253. |
[6] | 张恒璟, 崔东东, 程鹏飞. CORS站高程非线性速度场及方差波动模型构建方法[J]. 测绘学报, 2019, 48(9): 1096-1106. |
[7] | 赵建虎, 梁文彪. 海底控制网测量和解算中的几个关键问题[J]. 测绘学报, 2019, 48(9): 1197-1202. |
[8] | 陈张雷, 李崇辉, 郑勇, 陈冰, 何东汉. 天文定位中几何精度衰减因子最小值分析[J]. 测绘学报, 2019, 48(7): 879-888. |
[9] | 姚朝龙, 罗志才, 胡月明, 王长委, 张瑞, 李金明. 利用GPS垂向位移监测西南地区干旱事件[J]. 测绘学报, 2019, 48(5): 547-554. |
[10] | 鲁铁定, 吴光明, 周世健. 病态不确定性平差模型的岭估计算法[J]. 测绘学报, 2019, 48(4): 403-411. |
[11] | 贺礼家, 冯光财, 冯志雄, 高华. 哨兵-2号光学影像地表形变监测:以2016年MW7.8新西兰凯库拉地震为例[J]. 测绘学报, 2019, 48(3): 339-351. |
[12] | 阮仁桂, 魏子卿, 贾小林. 一种基于星间单差模糊度固定的载波伪距生成方法[J]. 测绘学报, 2018, 47(12): 1591-1598. |
[13] | 李烁, 王慧, 耿则勋, 于翔舟, 卢兰鑫. 双范数混合约束的遥感影像亮度不均变分校正[J]. 测绘学报, 2018, 47(12): 1621-1629. |
[14] | 余建胜, 赵斌, 谭凯, 王东振. 汶川地震震后GNSS形变分析[J]. 测绘学报, 2018, 47(9): 1196-1206. |
[15] | 姜尚洁, 罗斌, 贺鹏, 杨国鹏, 顾亚平, 刘军, 张云, 张良培. 利用无人机多源影像检测车辆速度[J]. 测绘学报, 2018, 47(9): 1228-1237. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||