[1] 李德仁, 童庆禧, 李荣兴, 等. 高分辨率对地观测的若干前沿科学问题[J]. 中国科学: 地球科学, 2012, 42(6): 805-813. LI Deren, TONG Qingxi, LI Rongxing, et al. Some frontier scientific problems of high resolution Earth observation[J]. Scientia Sinica (Terrae), 2012, 42(6): 805-813. [2] 李德仁, 王密, 沈欣, 等. 从对地观测卫星到对地观测脑[J]. 武汉大学学报(信息科学版), 2017, 42(2): 143-149. LI Deren, WANG Mi, SHEN Xin, et al. From earth observation satellite to earth observation brain[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 143-149. [3] 龚健雅. 人工智能时代测绘遥感技术的发展机遇与挑战[J]. 武汉大学学报(信息科学版), 2018, 43(12): 1788-1796. GONG Jianya. Chances and challenges for development of surveying and remote sensing in the age of artificial intelligence[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1788-1796. [4] 龚健雅, 许越, 胡翔云, 等. 遥感影像智能解译样本库现状与研究[J]. 测绘学报, 2021, 50(8): 1013-1022.DOI: 10.11947/j.AGCS.2021.20210085. GONG Jianya, XU Yue, HU Xiangyun, et al. Status analysis and research of sample database for intelligent interpretation of remote sensing image[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1013-1022.DOI: 10.11947/j.AGCS.2021.20210085. [5] 张永军, 万一, 史文中, 等. 多源卫星影像的摄影测量遥感智能处理技术框架与初步实践[J]. 测绘学报, 2021, 50(8): 1068-1083.DOI: 10.11947/j.AGCS.2021.20210079. ZHANG Yongjun, WAN Yi, SHI Wenzhong, et al. Technical framework and preliminary practices of photogrammetric remote sensing intelligent processing of multi-source satellite images[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1068-1083.DOI: 10.11947/j.AGCS.2021.20210079. [6] CHEN Wuyang, JIANG Ziyu, WANG Zhangyang, et al. Collaborative global-local networks for memory-efficient segmentation of ultra-high resolution images[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach, CA, USA: IEEE, 2019: 8916-8925. [7] XING Jin, SIEBER R, CAELLI T. A scale-invariant change detection method for land use/cover change research[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,141: 252-264. [8] WANG Xinyu, ZHONG Yanfei, ZHANG Liangpei, et al. Spatial group sparsity regularized nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6287-6304. [9] ZHONG Yanfei, LI Wenqing, WANG Xinyu, et al. Satellite-ground integrated destriping network: a new perspective for EO-1 Hyperion and Chinese hyperspectral satellite datasets[J]. Remote Sensing of Environment, 2020,237: 111416. [10] FRENCH R M. Catastrophic forgetting in connectionist networks[J]. Trends in Cognitive Sciences, 1999, 3(4): 128-135. [11] LEE Sangwoo,KIM Jinhwa,JUN Jaehyun,et al.Overcoming catastrophic forgetting by incremental moment matching[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: Red Hook,2017: 4655-4665. [12] PAN Ting.Dragon: a computation graph virtual machine based deep learning framework[EB/OL].[2022-02-28]. https://arxiv.org/abs/1707.08265. [13] TEAM TTD, AL-RFOU R, ALAIN G, et al.Theano: a Python framework for fast computation of mathematical expressions[EB/OL].[2022-02-28].https://arxiv.org/abs/1605.02688. [14] JIA Yangqing,SHELHAMER E,DONAHUE J,et al.Caffe:convolutional architecture for fast feature embedding[C]//Proceedings of the 22nd ACM international conference on Multimedia.New York, USA:Association for Computing Machinery,2014:675-678. [15] ABADI M, AGARWAL A, BARHAM P,et al. Tensorflow: large-scale machine learning on heterogeneous distributed systems[EB/OL].[2022-02-28].https://arxiv.org/pdf/1603.04467.pdf. [16] PASZKE A, GROSS S, MASSA F,et al.PyTorch: an imperative style, high-performance deep learning library[EB/OL].[2022-02-28].https://arxiv.org/abs/1912.01703. [17] CHEN Tianqi, LI Mu, LI Yutian, et al. MXNet: a flexible and efficient machine learning library for heterogeneous distributed systems[EB/OL].[2022-02-28].https://arxiv.org/pdf/1512.01274.pdf. [18] KRIZHEVSKY Alex,SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017,60(6): 84-90. [19] DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA:IEEE,2009: 248-255. [20] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2022-02-28].https://arxiv.org/abs/1409.1556. [21] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA,USA: IEEE, 2015: 1-9. [22] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 770-778. [23] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017. [24] SUN Ke, XIAO Bin, LIU Dong, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach, CA, USA: IEEE, 2019: 5686-5696. [25] LEVINE S, FINN C, DARRELL T, et al. End-to-end training of deep visuomotor policies[EB/OL].[2022-02-28].https://doi.org/10.48550/arXiv.1504.00702. [26] REAL E, MOORE S, SELLE A, et al. Large-scale evolution of image classifiers[EB/OL].[2022-02-28].https://arxiv.org/abs/1703.01041. [27] 黄樟灿.演化计算的搜索策略研究[D]. 武汉: 武汉大学, 2004. HUANG Zhangcan. Research on search strategy of evolutionary computation[D].Wuhan: Wuhan University, 2004. [28] TAN Mingxing, CHEN Bo, PANG Ruoming, et al. MnasNet: platform-aware neural architecture search for mobile[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019: 2815-2823. [29] LIPTON Z C, BERKOWITZ J, ELKAN C. A critical review of recurrent neural networks for sequence learning[EB/OL].[2022-02-28].https://arxiv.org/abs/1506.00019. [30] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL].[2022-02-28].https://arxiv.org/abs/1706.05587. [31] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. [32] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[EB/OL].[2022-02-28].https://arxiv.org/abs/1707.06347. [33] BOTTOU L. Stochastic gradient descent tricks[EB/OL].[2022-02-28].http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.419.1465. [34] NOGUEIRA K, PENATTI O A B, DOS SANTOS J A. Towards better exploiting convolutional neural networks for remote sensing scene classification[J]. Pattern Recognition, 2017,61: 539-556. [35] XIAO Zhifeng, LONG Yang, LI Deren, et al. High-resolution remote sensing image retrieval based on CNNs from a dimensional perspective[J]. Remote Sensing, 2017, 9(7): 725. [36] LONG Yang, GONG Yiping, XIAO Zhifeng, et al. Accurate object localization in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2486-2498. [37] DING Jian, XUE Nan, XIA Guisong, et al. Object detection in aerial images: a large-scale benchmark and challenges[EB/OL].[2022-02-28].https://arxiv.org/abs/2102.12219v2. [38] HUANG Bo, ZHAO Bei, SONG Yimeng. Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery[J]. Remote Sensing of Environment,2018,214:73-86. [39] HU HANGTAO, CAI SHUO, WANG WEI, et al. A semantic segmentation approach based on DeepLab network in high-resolution remote sensing images [C]//Proceedings of the 10th International Conference on Image and Graphics. Beijing,China:Springer, 2019. [40] KHELIFI L, MIGNOTTE M. Deep learning for change detection in remote sensing images: comprehensive review and meta-analysis[J]. IEEE Access, 2020(8): 126385-126400. [41] ZHANG Lin, HU Xiangyun, ZHANG Mi, et al. Object-level change detection with a dual correlation attention-guided detector[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021,177: 147-160. [42] YU Dawen, JI Shunping, LIU Jin, et al. Automatic 3D building reconstruction from multi-view aerial images with deep learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021,171: 155-170. [43] ALIDOOST F, AREFI H, TOMBARI F. 2D image-to-3D model: knowledge-based 3D building reconstruction (3DBR) using single aerial images and convolutional neural networks (CNNs)[J]. Remote Sensing, 2019, 11(19): 2219. |