测绘学报 ›› 2022, Vol. 51 ›› Issue (5): 668-676.doi: 10.11947/j.AGCS.2022.20200540

• 摄影测量学与遥感 • 上一篇    下一篇

融合多尺度特征注意力的遥感影像变化检测方法

梁哲恒, 黎宵, 邓鹏, 盛森, 姜福泉   

  1. 广东南方数码科技股份有限公司, 广东 广州 510665
  • 收稿日期:2020-11-06 修回日期:2021-10-31 出版日期:2022-05-20 发布日期:2022-05-28
  • 作者简介:梁哲恒(1977-),男,硕士,高级工程师,主要研究方向为GIS软件开发管理。E-mail:zhehengl.iang@southgis.com

Remote sensing image change detection fusion method integrating multi-scale feature attention

LIANG Zheheng, LI Xiao, DENG Peng, SHENG Sen, JIANG Fuquan   

  1. South Digital Technology Company, Guangzhou 510665, China
  • Received:2020-11-06 Revised:2021-10-31 Online:2022-05-20 Published:2022-05-28

摘要: 深度学习技术已经成为遥感影像变化检测研究的主流方法,现有的基于深度学习的变化检测方法主要是获取单一尺度的变化特征,而在现实场景中,变化区域的尺度具有多样性。为此,本文提出了融合多尺度特征注意力的遥感影像变化检测方法,通过关注多尺度融合策略来解决变化检测存在的多尺度问题。首先,利用特征金字塔网络自身的多尺度特性,使网络学习到不同尺度的变化特征,为了提升网络感受野和利用全局特征信息,在特征提取网络末端引入扩张卷积空间金字塔模块;然后,在不同变化特征融合时,使用变化特征融合模块来控制信息传播以减少特征融合时的差异性;最后,使用门控机制,将不同尺度预测的变化特征图进行加权求和,最终产生具有高精度的变化特征图。本文方法不仅能获取多尺度变化特征,还能利用全局信息和精确的空间细节来提升预测特征图的空间精度。对比试验表明,本文方法在变化检测基准数据集CDD和LEVIR-CD上取得了较好的结果,召回率分别提高了6.58%和5.26%。

关键词: 变化检测, 特征金字塔网络, 多尺度特征, 注意力融合, 门控机制

Abstract: Deep learning technology has become the mainstream method of remote sensing image change detection research. Existing change detection methods based on deep learning mainly obtain the change characteristics of a single scale. In the real scene, the scale of the change area is diverse. Therefore, we propose a change detection method of multi-scale feature attention fusion, which solves the multi-scale problem of change detection by focusing on multi-scale fusion strategy. We take advantage of the multi-scale characteristics of the feature pyramid network, the purpose is to enable the network to learn change features in different scales; meanwhile, in order to improve receptive field of network and exploit global information, atrous convolutional spatial pyramid module is introduced at the end of the feature extraction network; In addition, when different change features are fused, the change feature fusion module is used to control information flow to reduce the difference in feature fusion; Finally, the gating mechanism is utilized to perform weighted summation of the change feature maps predicted by different scales, and a high precision change feature map is generated. The proposed method can not only obtain multi-scale change features, but also use global information and precise spatial details to improve the spatial accuracy of the predicted feature maps. Experimental results show that our method has achieved competitive results on the change detection benchmark datasets CDD and LEVIR-CD, and the recall rate has increased by 6.58% and 5.26%, respectively.

Key words: change detection, feature pyramid network, multi-scale feature, attention fusion, gating mechanism

中图分类号: