[1] |
张国明,王俊淑,江南,等.关注点推荐算法的霍克斯过程法[J].测绘学报,2018, 47(9):1261-1269.DOI:10.11947/j.AGCS.2018.20170552. ZHANG Guoming, WANG Junshu, JIANG Nan, et al. A point-of-interest recommendation method based on hawkes process[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9):1261-1269. DOI:10.11947/j.AGCS.2018.20170552.
|
[2] |
LI Yang, QIAN Buyue, ZHANG Xianli, et al. Graph neural network-based diagnosis prediction[J]. Big Data, 2020, 8(5):379-390.
|
[3] |
ZHOU Fan, YANG Qing, ZHANG Kunpeng, et al. Reinforced spatiotemporal attentive graph neural networks for traffic forecasting[J]. IEEE Internet of Things Journal, 2020, 7(7):6414-6428.
|
[4] |
MA Yao, WANG Suhang, AGGARWAL C C, et al. Multi-dimensional graph convolutional networks[C]//Proceedings of 2019 SIAM International Conference on Data Mining. Philadelphia, PA:Society for Industrial and Applied Mathematics, 2019:657-665.
|
[5] |
FAN Dazhao, DONG Yang, ZHANG Yongsheng. Satellite image matching method based on deep convolutional neural network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2):90-100.
|
[6] |
陆川伟,孙群,陈冰,等.车辆轨迹数据的道路学习提取法[J].测绘学报, 2020, 49(6):692-702.DOI:10.11947/j.AGCS.2020.20190305. LU Chuanwei, SUN Qun, CHEN Bing, et al. Road learning extraction method based on vehicle trajectory data[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6):692-702. DOI:10.11947/j.AGCS.2020.20190305.
|
[7] |
UNGER M, TUZHILIN A, LIVNE A. Context-aware recommendations based on deep learning frameworks[J]. ACM Transactions on Management Information Systems, 2020, 11(2):1-15.
|
[8] |
ZHU Xiaoyan, YANG Xiaomei, YING Chenzhen, et al. A new classification algorithm recommendation method based on link prediction[J]. Knowledge-Based Systems, 2018, 159:171-185.
|
[9] |
YING R, HE Ruining, CHEN Kaifeng. Graph convolutional neural networks for web-scale recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, NY, USA:ACM, 2018:10-21.
|
[10] |
ZHANG Jiani, SHI Xingjian, ZHAO Shenglin, et al. STAR-GCN:stacked and reconstructed graph convolutional networks for recommender systems[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao, China:International Joint Conferences on Artificial Intelligence Organization, 2019:4264-4270.
|
[11] |
WANG Xiang, HE Xiangnan, WANG Meng, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Paris,France:ACM, 2019:165-174.
|
[12] |
FAN Wenqi, MA Yao, LI Qing, et al. Graph neural networks for social recommendation[C]//Proceedings of 2019 World Wide Web Conference. New York, NY, USA:ACM, 2019:417-426.
|
[13] |
SONG Weiping, XIAO Zhiping, WANG Yifan, et al. Session-based social recommendation via dynamic graph attention networks[C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining.New York, NY, USA:ACM, 2019:555-563.
|
[14] |
FENG Chenyuan, LIU Zuozhu, LIN Shaowei, et al. Attention-based graph convolutional network for recommendation system[C]//Proceedings of 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton, UK:IEEE, 2019:7560-7564.
|
[15] |
WU Qitian, ZHANG Hengrui, GAO Xiaofeng, et al. Dual graph attention networks for deep latent representation of multifaceted social effects in recommender systems[C]//Proceedings of 2019 World Wide Web Conference. San Francisco CA USA. New York, NY, USA:ACM, 2019:2091-2102.
|
[16] |
WU Shu, TANG Yuyuan, ZHU Yanqiao, et al. Session-based recommendation with graph neural networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1):346-353.
|
[17] |
WANG Xiang, HE Xiangnan, CAO Yixin, et al. KGAT:knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage,AK,USA:ACM, 2019:950-958.
|
[18] |
WU Shiwen, ZHANG Yuanxing, GAO Chengliang, et al. GARG:anonymous recommendation of point-of-interest in mobile networks by graph convolution network[J]. Data Science and Engineering, 2020, 5(4):433-447.
|
[19] |
HAN Peng, SHANG Shuo, SUN Aixin, et al. AUC-MF:point of interest recommendation with AUC maximization[C]//Proceedings of 2019 IEEE 35th International Conference on Data Engineering (ICDE). Macao, China:IEEE, 2019:1558-1561.
|
[20] |
孟祥福,张霄雁,唐延欢,等.基于地理-社会关系的多样性与个性化兴趣点推荐[J].计算机学报, 2019, 42(11):2574-2590. MENG Xiangfu, ZHANG Xiaoyan, TANG Yanhuan, et al. A diversified and personalized recommendation approach based on geo-social relationships[J]. Chinese Journal of Computers, 2019, 42(11):2574-2590.
|
[21] |
YANG Zichao, YANG Diyi, DYER C, et al. Hierarchical attention networks for document classification[C]//Proceedings of 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. San Diego, California. Stroudsburg, PA, USA:Association for Computational Linguistics, 2016:1480-1489.
|
[22] |
CHEN Chong, ZHANG Min, LIU Yiqun, et al. Neural attentional rating regression with review-level explanations[C]//Proceedings of 2018 World Wide Web Conference on World Wide Web.New York, NY, USA:ACM, 2018:1583-1592.
|
[23] |
CHEN Jiawei, WANG Can, SHI Qihao, et al. Social recommendation based on users' attention and preference[J]. Neurocomputing, 2019, 341(14):1-9.
|
[24] |
WANG Hao, TERROVITIS M, MAMOULIS N. Location recommendation in location-based social networks using user check-in data[C]//Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Orlando Florida, USA:ACM, 2013:364-373.
|
[25] |
彭晏飞, 方金凤, 訾玲玲, 等. 多视觉特征与K-centroid聚类的高分辨率遥感图像检索[J]. 测绘科学技术学报, 2017, 34(5):496-500. PENG Yanfei, FANG Jinfeng, ZI Lingling, et al. High resolution remote sensing image retrieval based on multi-visual feature and K-centroid clustering[J]. Journal of Geomatics Science and Technology, 2017, 34(5):496-500.
|
[26] |
HE Xiangnan, LIAO Lizi, ZHANG Hanwang, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. Perth, Australia:Steering Committee, 2017:173-182.
|
[27] |
孟祥福, 齐雪月, 张全贵, 等. 用户-兴趣点耦合关系的兴趣点推荐方法[J]. 智能系统学报, 2021, 16(2):228-236. MENG Xiangfu, QI Xueyue, ZHANG Quangui, et al. A POI recommendation approach based on user-POI coupling relationships[J]. CAAI Transactions on Intelligent Systems, 2021, 16(2):228-236.
|
[28] |
SALAKHUTDINOV R, MNIH A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo[C]//Proceedings of the 25th international conference on Machine learning (ICML 2008). Helsinki, Finland:ACM, 2008:880-887.
|