测绘学报 ›› 2022, Vol. 51 ›› Issue (7): 1271-1293.doi: 10.11947/j.AGCS.2022.20220173
李星星, 张伟, 袁勇强, 张柯柯, 吴家齐, 娄嘉庆, 李婕, 郑鸿杰
收稿日期:
2022-03-06
修回日期:
2022-07-12
发布日期:
2022-08-13
作者简介:
李星星(1985-),男,教授,研究方向为GNSS精密数据处理。E-mail:xxli@sgg.whu.edu.cn
基金资助:
LI Xingxing, ZHANG Wei, YUAN Yongqiang, ZHANG Keke, WU Jiaqi, LOU Jiaqing, LI Jie, ZHENG Hongjie
Received:
2022-03-06
Revised:
2022-07-12
Published:
2022-08-13
Supported by:
摘要: GNSS卫星精密轨道是高精度GNSS应用的基础与前提,GNSS卫星精密定轨技术也一直都是卫星导航领域的研究重点与热点。本文首先介绍了GNSS星座与跟踪数据概况,梳理了精密定轨函数模型、动力学模型及随机模型构建过程中的关键问题,归纳了低轨星载观测和星间链路观测等多源数据增强GNSS精密定轨的研究进展;然后,从应用的角度总结了当前GNSS精密轨道产品的基本状态,并进行了精度评估;最后,讨论了GNSS精密定轨在大网快速解算、多层次观测数据融合、太阳光压模型精化及高精度实时定轨等方面所面临的挑战,并展望了低轨星座、光钟、激光链路等新技术给GNSS精密定轨带来的机遇。
中图分类号:
李星星, 张伟, 袁勇强, 张柯柯, 吴家齐, 娄嘉庆, 李婕, 郑鸿杰. GNSS卫星精密定轨综述:现状、挑战与机遇[J]. 测绘学报, 2022, 51(7): 1271-1293.
LI Xingxing, ZHANG Wei, YUAN Yongqiang, ZHANG Keke, WU Jiaqi, LOU Jiaqing, LI Jie, ZHENG Hongjie. Review of GNSS precise orbit determination: status, challenges, and opportunities[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1271-1293.
[1] 陈俊勇. GPS技术进展及其现代化[J].大地测量与地球动力学, 2010, 30(3):1-4. CHEN Junyong. On progress in technology and modernization of GPS[J]. Journal of Geodesy and Geodynamics, 2010, 30(3):1-4. [2] 杨元喜.北斗卫星导航系统的进展、贡献与挑战[J].测绘学报, 2010, 39(1):1-6. YANG Yuanxi. Progress, contribution and challenges of compass/BeiDou satellite navigation system[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(1):1-6. [3] KOGURE S, GANESHAN A S, MONTENBRUCK O. Regional systems[M]//TEUNISSEN P J G, MONTENBRUCK O. Springer Handbook of Global Navigation Satellite Systems. Cham:Springer, 2017:305-338. [4] 赵齐乐. GPS导航星座及低轨卫星的精密定轨理论和软件研究[D].武汉:武汉大学, 2004. ZHAO Qile. Research on precise orbit determination theory and software of both GPS navigation constellation and LEO satellites[D]. Wuhan:Wuhan University, 2004. [5] LI Xingxing, ZHU Yiting, ZHENG Kai, et al. Precise orbit and clock products of Galileo, BDS and QZSS from MGEX Since 2018:comparison and PPP validation[J]. Remote Sensing, 2020, 12(9):1415. DOI:10.3390/rs12091415. [6] YANG Daoning, YANG Jun, LI Gang, et al. Globalization highlight:orbit determination using BeiDou inter-satellite ranging measurements[J]. GPS Solutions, 2017, 21(3):1395-1404. DOI:10.1007/s10291-017-0626-5. [7] 李敏.多模GNSS融合精密定轨理论及其应用研究[D].武汉:武汉大学, 2011. LI Min. Research on multi-GNSS precise orbit determination theory and application[D]. Wuhan:Wuhan University, 2011. [8] 袁运斌.基于GPS的电离层监测及延迟改正理论与方法的研究[D].武汉:中国科学院研究生院(测量与地球物理研究所), 2002. YUAN Yunbin. Study on theories and methods of correcting ionospheric delay and monitoring ionosphere based on GPS[D]. Wuhan:Institute of Geodesy and Geophysics, Chinese Academy of Sciences, 2002. [9] LE A Q, KESHIN M O, VAN DER MAREL H. Single and dual-frequency precise point positioning:approaches and performances[C]//Proceedings of the 3rd ESA Workshop on Satellite Navigation User Equipment Technologies. Noordwijk, Wederland:ESA Publications, 2007. [10] LEANDRO R F. Precise point positioning with GPS:a new approach for positioning, atmospheric studies, and signal analysis[D]. Fredericton:University of New Brunswick, 2009. [11] 张宝成. GNSS非差非组合精密单点定位的理论方法与应用研究[J].测绘学报, 2014, 43(10):1099-1099. DOI:10.13485/j.cnki.11-2089.2014.0155. ZHANG Baocheng. Study on the theoretical methodology and applications of precise point positioning using undifferenced and uncombined GNSS data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(10):1099-1099. DOI:10.13485/j.cnki.11-2089.2014.0155. [12] LIU Teng, ZHANG Baocheng. Estimation of code observation-specific biases (OSBs) for the modernized multi-frequency and multi-GNSS signals:an undifferenced and uncombined approach[J]. Journal of Geodesy, 2021, 95(8):97. DOI:10.1007/s00190-021-01549-x. [13] LI Xingxing, GE Maorong, ZHANG Hongping, et al. A method for improving uncalibrated phase delay estimation and ambiguity-fixing in real-time precise point positioning[J]. Journal of Geodesy, 2013, 87(5):405-416. DOI:10.1007/s00190-013-0611-x. [14] LI Xin, LI Xingxing, LIU Gege, et al. BDS multi-frequency PPP ambiguity resolution with new B2a/B2b/B2a+b signals and legacy B1I/B3I signals[J]. Journal of Geodesy, 2020, 94(10):107. DOI:10.1007/s00190-020-01439-8. [15] 辜声峰.多频GNSS非差非组合精密数据处理理论及其应用[D].武汉:武汉大学, 2013. GU Shengfeng. Research on the zero-difference un-combined data processing model for multi-frequency GNSS and its applications[D]. Wuhan:Wuhan University, 2013. [16] 周锋.多系统GNSS非差非组合精密单点定位相关理论和方法研究[D].上海:华东师范大学, 2018. ZHOU Feng. Theory and methodology of multi-GNSS undifferenced and uncombined precise point positioning[D]. Shanghai:East China Normal University, 2018. [17] SCHÖNEMANN E. Analysis of GNSS raw observations in PPP solutions[M]. Darmstadt:Technische Universität Darmstadt, 2013. [18] 郭靖.姿态、光压和函数模型对导航卫星精密定轨影响的研究[D].武汉:武汉大学, 2014. GUO Jing. The impacts of attitude, solar radiation and function model on precise orbit determination for GNSS satellites[D]. Wuhan:Wuhan University, 2014. [19] 陈华.基于原始观测值的GNSS统一快速精密数据处理方法[D].武汉:武汉大学, 2015. CHEN Hua. An efficient and unified GNSS raw data processing strategy[D]. Wuhan:Wuhan University, 2015. [20] STRASSER S, MAYER-GVRR T, ZEHENTNER N. Processing of GNSS constellations and ground station networks using the raw observation approach[J]. Journal of Geodesy, 2019, 93(7):1045-1057. DOI:10.1007/s00190-018-1223-2. [21] 李星星,黄健德,袁勇强,等. Galileo三频非组合精密定轨模型及精度评估[J].测绘学报, 2020, 49(9):1120-1130. DOI:10.11947/j.AGCS.2020.20200320. LI Xingxing, HUANG Jiande, YUAN Yongqiang, et al. Galileo triple-frequency uncombined precise orbit determination:model and quality assessment[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9):1120-1130. DOI:10.11947/j.AGCS.2020.20200320. [22] 曾添.多频GNSS精密定轨及低轨卫星增强研究[D].郑州:信息工程大学, 2020. ZENG Tian. Research on multi-frequency GNSS precise orbit determination and low earth orbit satellite enhancement[D]. Zhengzhou:Information Engineering University, 2020. [23] BLEWITT G. Fixed point theorems of GPS carrier phase ambiguity resolution and their application to massive network processing:ambizap[J]. Journal of Geophysical Research, 2008, 113(B12):B12410. DOI:10.1029/2008JB005736. [24] BLEWITT G, BERTIGER W, WEISS J P. Ambizap3 and GPS carrier-range:a new data type with IGS applications[C]//Proceedings of 2010 IGS Workshop and Vertical Rates. Newcastle:[s.n.], 2010:28. [25] 匡开发. GNSS卫星实时精密定轨技术研究[D].武汉:武汉大学, 2019. KUANG Kaifa. Research on GNSS satellite real-time precise orbit determination technique[D]. Wuhan:Wuhan University, 2019. [26] TEUNISSEN P J G, JOOSTEN P, TIBERIUS C C J M. A comparison of TCAR, CIR and LAMBDA GNSS ambiguity resolution[C]//Proceedings of the 15th International Technical Meeting of the Satellite Division of the Institute of Navigation. Portland, OR, USA:Institute of Navigation, 2002:2799-2808. [27] BEUTLER G, BOCK H, DACH R, et al. Bernese GPS software version 5.0[R]. Bern:Astronomical Institute, University of Bern, 2007. [28] GE M, GENDT G, DICK G, et al. Improving carrier-phase ambiguity resolution in global GPS network solutions[J]. Journal of Geodesy, 2005, 79(1):103-110. DOI:10.1007/s00190-005-0447-0. [29] GENG Tao, XIE Xin, ZHAO Qile, et al. Improving BDS integer ambiguity resolution using satellite-induced code bias correction for precise orbit determination[J]. GPS Solutions, 2017, 21(3):1191-1201. DOI:10.1007/s10291-017-0602-0. [30] LOU Yidong, GONG Xiaopeng, GU Shengfeng, et al. Assessment of code bias variations of BDS triple-frequency signals and their impacts on ambiguity resolution for long baselines[J]. GPS Solutions, 2017, 21(1):177-186. DOI:10.1007/s10291-016-0514-4. [31] LIU Yang, GE Maorong, SHI Chuang, et al. Improving integer ambiguity resolution for GLONASS precise orbit determination[J]. Journal of Geodesy, 2016, 90(8):715-726. DOI:10.1007/s00190-016-0904-y. [32] GE M, GENDT G, ROTHACHER M, et al. Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations[J]. Journal of Geodesy, 2008, 82(7):401. DOI:10.1007/s00190-007-0208-3. [33] LI Xingxing, LI Xin, YUAN Yongqiang, et al. Multi-GNSS phase delay estimation and PPP ambiguity resolution:GPS, BDS, GLONASS, Galileo[J]. Journal of Geodesy, 2018, 92(6):579-608. DOI:10.1007/s00190-017-1081-3. [34] LI Xingxing, LI Xin, LIU Gege, et al. Triple-frequency PPP ambiguity resolution with multi-constellation GNSS:BDS and Galileo[J]. Journal of Geodesy, 2019, 93(8):1105-1122. DOI:10.1007/s00190-019-01229-x. [35] LOYER S, PEROSANZ F, MERCIER F, et al. Zero-difference GPS ambiguity resolution at CNES-CLS IGS analysis center[J]. Journal of Geodesy, 2012, 86(11):991-1003. DOI:10.1007/s00190-012-0559-2. [36] LOYER S, PEROSANZ F, VERSINI L, et al. CNES/CLS IGS Analysis center:recent activities[C]//Proceedings of 2018 IGS Workshop. Wuhan:[s.n.], 2018. [37] CHEN Hua, JIANG Weiping, GE Maorong, et al. An enhanced strategy for GNSS data processing of massive networks[J]. Journal of Geodesy, 2014, 88(9):857-867. DOI:10.1007/s00190-014-0727-7. [38] GENG Jianghui, MENG Xiaolin, DODSON A H, et al. Integer ambiguity resolution in precise point positioning:method comparison[J]. Journal of Geodesy, 2010, 84(9):569-581. DOI:10.1007/s00190-010-0399-x. [39] LI Xingxing, XIONG Yun, YUAN Yongqiang, et al. Real-time estimation of multi-GNSS integer recovery clock with undifferenced ambiguity resolution[J]. Journal of Geodesy, 2019, 93(12):2515-2528. DOI:10.1007/s00190-019-01312-3. [40] SCHMID R, ROTHACHER M, THALLER D, et al. Absolute phase center corrections of satellite and receiver antennas:impact on global GPS solutions and estimation of azimuthal phase center variations of the satellite antenna[J]. GPS Solutions, 2005, 9(4):283-293. DOI:10.1007/s10291-005-0134-x. [41] KOUBA J. A simplified yaw-attitude model for eclipsing GPS satellites[J]. GPS Solutions, 2009, 13(1):1-12. DOI:10.1007/s10291-008-0092-1. [42] DILSSNER F, SPRINGER T, GIENGER G, et al. The GLONASS-M satellite yaw-attitude model[J]. Advances in Space Research, 2011, 47(1):160-171. DOI:10.1016/j.asr.2010.09.007. [43] MONTENBRUCK O, SCHMID R, MERCIER F, et al. GNSS satellite geometry and attitude models[J]. Advances in Space Research, 2015, 56(6):1015-1029. DOI:10.1016/j.asr.2015.06.019. [44] EGSC (European GNSS Service Centre). Galileo satellite metadata[DB/OL].[2022-01-08]. https://www.gsc-europa.eu/support-to-developers/galileo-satellite-metadata. [45] CAO (Cabinet Office, Government of Japan). QZSS satellite information[DB/OL].[2022-05-01]. https://qzss.go.jp/en/technical/qzssinfo/. [46] GUO Jing, ZHAO Qile. Analysis of precise orbit determination for BeiDou satellites during yaw maneuvers[C]//Proceedings of 2014 China Satellite Navigation Conference. Nanjing:[s.n.], 2014. [47] GUO Jing, CHEN Guo, ZHAO Qile, et al. Comparison of solar radiation pressure models for BDS IGSO and MEO satellites with emphasis on improving orbit quality[J]. GPS Solutions, 2017, 21(2):511-522. DOI:10.1007/s10291-016-0540-2. [48] DAI Xiaolei, GE Maorong, LOU Yidong, et al. Estimating the yaw-attitude of BDS IGSO and MEO satellites[J]. Journal of Geodesy, 2015, 89(10):1005-1018. DOI:10.1007/s00190-015-0829-x. [49] YUAN Yongqiang, Li Xingxing, ZHU Yiting, et al. Improving QZSS precise orbit determination by considering the solar radiation pressure of the L-band antenna[J]. GPS Solutions, 2020, 24(2):50. DOI:10.1007/s10291-020-0963-7. [50] 刘宇玺,贾小林,阮仁桂.北斗系统IGSO卫星新姿态控制模式下定轨精度分析[J].大地测量与地球动力学, 2017, 37(6):614-617. DOI:10.14075/j.jgg.2017.06.012. LIU Yuxi, JIA Xiaolin, RUAN Rengui. BeiDou IGSO Satellite orbit determination precision analysis based on new attitude control mode[J]. Journal of Geodesy and Geodynamics, 2017, 37(6):614-617. DOI:10.14075/j.jgg.2017.06.012. [51] LI Xingxing, YUAN Yongqiang, HUANG Jiande, et al. Galileo and QZSS precise orbit and clock determination using new satellite metadata[J]. Journal of Geodesy, 2019, 93(8):1123-1136. DOI:10.1007/s00190-019-01230-4. [52] MADER G L. GPS antenna calibration at the national geodetic survey[J]. GPS Solutions, 1999, 3(1):50-58. DOI:10.1007/PL00012780. [53] GE Maorong, GENDT G, DICK G, et al. Impact of GPS satellite antenna offsets on scale changes in global network solutions[J]. Geophysical Research Letters, 2005, 32(6):L06310. DOI:10.1029/2004gl022224. [54] REBISCHUNG P, GRIFFITHS J, RAY J, et al. IGS08:the IGS realization of ITRF2008[J]. GPS Solutions, 2012, 16(4):483-494. DOI:10.1007/s10291-011-0248-2. [55] REBISCHUNG P, SCHMID R. IGS14/igs14.atx:a new framework for the IGS products[C]//Proceedings of 2016 American Geophysical Union, Fall Meeting. San Francisco, CA, USA:IGS, 2016. [56] JÄGGI A, DILSSNER F, SCHMID R, et al. Extension of the GPS satellite antenna patterns to nadir angles beyond 14°[C]//Proceedings of 2012 EGU General Assembly. Vienna, Austria:EGU, 2012:14. [57] STEIGENBERGER P, FRITSCHE M, DACH R, et al. Estimation of satellite antenna phase center offsets for Galileo[J]. Journal of Geodesy, 2016, 90(8):773-785. DOI:10.1007/s00190-016-0909-6. [58] HUANG Guanwen, YAN Xingyuan, ZHANG Qin, et al. Estimation of antenna phase center offset for BDS IGSO and MEO satellites[J]. GPS Solutions, 2018, 22(2):49. DOI:10.1007/s10291-018-0716-z. [59] DILSSNER F, SPRINGER T, SCHÖNEMANN E, et al. Estimation of satellite antenna phase center corrections for BeiDou[C]//Proceedings of 2014 IGS Workshop. Pasadena, CA, USA:ESA, 2014:23-27. [60] YAN Xingyuan, HUANG Guanwen, ZHANG Qin, et al. Estimation of the antenna phase center correction model for the BeiDou-3 MEO satellites[J]. Remote Sensing, 2019, 11(23):2850. DOI:10.3390/rs11232850. [61] GUO Jing, XU Xiaolong, ZHAO Qile, et al. Precise orbit determination for quad-constellation satellites at Wuhan University:strategy, result validation, and comparison[J]. Journal of Geodesy, 2016, 90(2):143-159. DOI:10.1007/s00190-015-0862-9. [62] LI Xingxing, YUAN Yongqiang, ZHU Yiting, et al. Precise orbit determination for BDS-3 experimental satellites using iGMAS and MGEX tracking networks[J]. Journal of Geodesy, 2019, 93(1):103-117. DOI:10.1007/s00190-018-1144-0. [63] VILLIGER A. igs14_2056:update including BeiDou-3S and BeiDou-3 satellites[DB/OL].[2019-06-04]. https://lists.igs.org/pipermail/igsmail/2019/007778.html. [64] CSNO (China Satellite Navigation Office). Satellite antenna phase center of BDS[DB/OL].[2019-06-10]. http://en.beidou.gov.cn/SYSTEMS/Officialdocument/201912/P020200323536112807882.atx. [65] 王晨.北斗导航卫星光压模型构建与精化研究[D].武汉:武汉大学, 2019. WANG Chen. Solar radiation pressure modelling for BeiDou navigation satellites[D]. Wuhan:Wuhan University, 2019. [66] BURY G, SOŚNICA K, ZAJDEL R, et al. Toward the 1-cm Galileo orbits:challenges in modeling of perturbing forces[J]. Journal of Geodesy, 2020, 94(2):16. DOI:10.1007/s00190-020-01342-2. [67] BEUTLER G, BROCKMANN E, GURTNER W, et al. Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS):theory and initial results[J]. Manuscripta Geodaetica, 1994, 19(6):367-386. [68] MONTENBRUCK O, STEIGENBERGER P, PRANGE L, et al. The multi-GNSS experiment (MGEX) of the International GNSS service (IGS)-achievements, prospects and challenges[J]. Advances in Space Research, 2017, 59(7):1671-1697. DOI:10.1016/j.asr.2017.01.011. [69] ARNOLD D, MEINDL M, BEUTLER G, et al. CODE's new solar radiation pressure model for GNSS orbit determination[J]. Journal of Geodesy, 2015, 89(8):775-791. DOI:10.1007/s00190-015-0814-4. [70] LIU Junhong, GU Defeng, JU Bing, et al. A new empirical solar radiation pressure model for BeiDou GEO satellites[J]. Advances in Space Research, 2016, 57(1):234-244. DOI:10.1016/j.asr.2015.10.043. [71] PRANGE L, BEUTLER G, DACH R, et al. An empirical solar radiation pressure model for satellites moving in the orbit-normal mode[J]. Advances in Space Research, 2020, 65(1):235-250. DOI:10.1016/j.asr.2019.07.031. [72] FLIEGEL H F, GALLINI T E, SWIFT E R. Global positioning system radiation force model for geodetic applications[J]. Journal of Geophysical Research, 1992, 97(B1):559-568. DOI:10.1029/91jb02564. [73] FENG Weidong, GUO Xiangyu, QIU Hongxing, et al. A study of analytical solar radiation pressure modeling for BeiDou navigation satellites based on raytracing method[M]//SUN Jiadong, JIAO Wenhai, WU Haitao, et al. China Satellite Navigation Conference (CSNC)2014 Proceedings:Volume Ⅱ. Berlin, Heidelberg:Springer, 2014:425-435. [74] ZIEBART M. Generalized analytical solar radiation pressure modeling algorithm for spacecraft of complex shape[J]. Journal of Spacecraft and Rockets, 2004, 41(5):840-848. DOI:10.2514/1.13097. [75] LI Xingxing, YUAN Yongqiang, ZHU Yiting, et al. Improving BDS-3 precise orbit determination for medium earth orbit satellites[J]. GPS Solutions, 2020, 24(2):53. DOI:10.1007/s10291-020-0967-3. [76] DUAN Bingbing, HUGENTOBLER U. Enhanced solar radiation pressure model for GPS satellites considering various physical effects[J]. GPS Solutions, 2021, 25(2):42. DOI:10.1007/s10291-020-01073-z. [77] DUAN Bingbing, HUGENTOBLER U, HOFACKER M, et al. Improving solar radiation pressure modeling for GLONASS satellites[J]. Journal of Geodesy, 2020, 94(8):72. DOI:10.1007/s00190-020-01400-9. [78] MONTENBRUCK O, STEIGENBERGER P, HUGENTOBLER U. Enhanced solar radiation pressure modeling for Galileo satellites[J]. Journal of Geodesy, 2015, 89(3):283-297. DOI:10.1007/s00190-014-0774-0. [79] DUAN Bingbing, HUGENTOBLER U, SELMKE I, et al. BeiDou satellite radiation force models for precise orbit determination and geodetic applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022. DOI:10.1109/TAES.2021.3140018. [80] RODRIGUEZ-SOLANO C J, HUGENTOBLER U, STEIGEN-BERGER P. Impact of albedo radiation on GPS satellites[M]//KENYON S, PACINO M C, MARTI U. Geodesy for Planet Earth. Berlin, Heidelberg:Springer, 2012:113-119. [81] BURY G, ZAJDEL R, SOŚNICA K. Accounting for perturbing forces acting on Galileo using a box-wing model[J]. GPS Solutions, 2019, 23(3):74. DOI:10.1007/s10291-019-0860-0. [82] SVEHLA D. Model of solar radiation pressure and thermal re-radiation[M]//SVEHLA D. Geometrical Theory of Satellite Orbits and Gravity Field. Cham:Springer, 2018:269-295. [83] COLOMBO O L. The dynamics of global positioning system orbits and the determination of precise ephemerides[J]. Journal of Geophysical Research, 1989, 94(B7):9167-9182. DOI:10.1029/jb094ib07p09167. [84] WANG Chen, GUO Jing, ZHAO Qile, et al. Empirically derived model of solar radiation pressure for BeiDou GEO satellites[J]. Journal of Geodesy, 2019, 93(6):791-807. DOI:10.1007/s00190-018-1199-y. [85] SIDOROV D, DACH R, POLLE B, et al. Adopting the empirical CODE orbit model to Galileo satellites[J]. Advances in Space Research, 2020, 66(12):2799-2811. DOI:10.1016/j.asr.2020.05.028. [86] ZIEBART M, SIBTHORPE A, CROSS P, et al. Cracking the GPS-SLR orbit anomaly[C]//Proceedings of the 20th International Technical Meeting of the Satellite Division of the Institute of Navigation. Fort Worth, TX, USA:Fort Worth Convention Center, 2007:2033-2038. [87] STEIGENBERGER P, THOELERT S, MONTENBRUCK O. GNSS satellite transmit power and its impact on orbit determination[J]. Journal of Geodesy, 2018, 92(6):609-624. DOI:10.1007/s00190-017-1082-2. [88] EDGAR C, PRICE J, ITEIGH D. GPS Block ⅡA and ⅡR received signal power measurements[C]//Proceedings of 1998 National Technical Meeting of the Institute of Navigation. Long Beach, CA, USA:Westin Long Beach Hotel, 1998:401-411. [89] WU A. Predictions and field measurements of the GPS Block ⅡR L1 and L2 ground powers[C]//Proceedings of 2002 National Technical Meeting of the Institute of Navigation. San Diego, CA, USA:The Catamaran Resort Hotel, 2002:931-938. [90] GERDAN G P. A comparison of four methods of weighting double difference pseudorange measurements[J]. Australian Surveyor, 1995, 40(4):60-66. DOI:10.1080/00050334.1995.10558564. [91] HAN S. Quality-control issues relating to instantaneous ambiguity resolution for real-time GPS kinematic positioning[J]. Journal of Geodesy, 1997, 71(6):351-361. DOI:10.1007/s001900050103. [92] KING R W, BOCK Y. Documentation for the GAMIT GPS analysis software[R]. Cambridge:Massachusetts Institute of Technology, 1995. [93] LIU Jingnan, GE Maorong. PANDA software and its preliminary result of positioning and orbit determination[J]. Wuhan University Journal of Natural Sciences, 2003, 8(2):603-609. DOI:10.1007/bf02899825. [94] SATIRAPOD C. Stochastic models used in static GPS relative positioning[J]. Survey Review, 2006, 38(299):379-386. DOI:10.1179/sre.2006.38.299.379. [95] LAU L, MOK E. Improvement of GPS relative positioning accuracy by using SNR[J]. Journal of Surveying Engineering, 1999, 125(4):185-202. DOI:10.1061/(asce)0733-9453(1999)125:4(185). [96] 刘志强.基于随机模型精化的GPS精密定位算法研究与实现[D].南京:河海大学, 2007. LIU Zhiqiang. Research and implementation of precise GPS positioning data processing algorithm based on refined stochastic model[D]. Nanjing:Hohai University, 2007. [97] 刘金海,涂锐,张睿,等. Helmert方差分量估计在GPS/GLONASS/BDS组合定位权比确定中的应用[J].大地测量与地球动力学, 2018, 38(6):568-570, 576. DOI:10.14075/j.jgg.2018.06.004. LIU Jinhai, TU Rui, ZHANG Rui, et al. Application of helmert variance component estimation in GPS/GLONASS/BDS combined positioning weight determination[J]. Journal of Geodesy and Geodynamics, 2018, 38(6):568-570, 576. DOI:10.14075/j.jgg.2018.06.004. [98] 杨汀,陈宜金,陈浩男.最小二乘方差分量估计在GNSS差分定位随机模型精化中的应用[J].大地测量与地球动力学, 2017, 37(2):196-199, 204. DOI:10.14075/j.jgg.2017.02.018. YANG Ting, CHEN Yijin, CHEN Haonan. Least-squares variance component estimation applied to stochastic model refinement of GNSS difference positioning[J]. Journal of Geodesy and Geodynamics, 2017, 37(2):196-199, 204. DOI:10.14075/j.jgg.2017.02.018. [99] 何海波,杨元喜. GPS观测量先验方差-协方差矩阵实时估计[J].测绘学报, 2001, 30(1):42-47. HE Haibo, YANG Yuanxi. Real-time estimation of a prior variance-covariance for GPS observations[J]. Acta Geodaetica et Cartographica Sinica, 2001, 30(1):42-47. [100] 杨元喜,徐天河.基于移动开窗法协方差估计和方差分量估计的自适应滤波[J].武汉大学学报(信息科学版), 2003, 28(6):714-718. YANG Yuanxi, XU Tianhe. An adaptive Kalman filter combining variance component estimation with covariance matrix estimation based on moving window[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6):714-718. [101] WANG Yongchao, FENG Yanming, ZHENG Fu. Geometry-free stochastic analysis of BDS triple frequency signals[C]//Proceedings of 2016 International Technical Meeting of the Institute of Navigation. Monterey, CA, USA:The Institute of Navigation, 2016:956-969. [102] 黄令勇,吕志平,吕浩,等.北斗三频伪距相关随机模型单站建模方法[J].测绘学报, 2016, 45(S2):165-171. DOI:10.11947/j.AGCS.2016.F038. HUANG Lingyong, LVZhiping, LV Hao, et al. The BDS triple frequency pseudo-range correlated stochastic model of single station modeling method[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(S2):165-171. DOI:10.11947/j.AGCS.2016.F038. [103] 张小红,马福建.低轨导航增强GNSS发展综述[J].测绘学报, 2019, 48(9):1073-1087. DOI:10.11947/j.AGCS.2019.20190176. ZHANG Xiaohong, MA Fujian. Review of the development of LEO navigation-augmented GNSS[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9):1073-1087. DOI:10.11947/j.AGCS.2019.20190176. [104] RIM H J, SCHUTZ B E, ABUSALI P A M, et al. Effect of GPS orbit accuracy on GPS-determined Topex/Poseidon orbit[C]//Proceedings of 1995 ION GPS-95.[S.l.]:Institute of Navigation, 1995:613-617. [105] ZHU Shengyuan, REIGBER C, KÖNIG R. Integrated adjustment of CHAMP, GRACE, and GPS data[J]. Journal of Geodesy, 2004, 78(1):103-108. DOI:10.1007/s00190-004-0379-0. [106] GENG Jianghui, SHI Changhong, ZHAO Qile, et al. Integrated adjustment of LEO and GPS in precision orbit determination[C]//Proceedings of 2008 VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy. Wuhan:Springer, 2008:133-137. [107] LI Xingxing, ZHANG Keke, MENG Xiangguang, et al. LEO-BDS-GPS integrated precise orbit modeling using FengYun-3D, FengYun-3C onboard and ground observations[J]. GPS Solutions, 2020, 24(2):48. DOI:10.1007/s10291-020-0962-8. [108] LI Xingxing, ZHANG Keke, MA Fujian, et al. Integrated precise orbit determination of multi-GNSS and large LEO constellations[J]. Remote Sensing, 2019, 11(21):2514. DOI:10.3390/rs11212514. [109] ZHAO Qile, WANG Chen, GUO Jing, et al. Enhanced orbit determination for BeiDou satellites with FengYun-3C onboard GNSS data[J]. GPS Solutions, 2017, 21(3):1179-1190. DOI:10.1007/s10291-017-0604-y. [110] LI Bofeng, GE Haibo, GE Maorong, et al. LEO enhanced global navigation satellite system (LeGNSS) for real-time precise positioning services[J]. Advances in Space Research, 2019, 63(1):73-93. DOI:10.1016/j.asr.2018.08.017. [111] HUANG Wen, MÄNNEL B, SAKIC P, et al. Integrated processing of ground-and space-based GPS observations:improving GPS satellite orbits observed with sparse ground networks[J]. Journal of Geodesy, 2020, 94(10):96. DOI:10.1007/s00190-020-01424-1. [112] 石立国.分布式卫星系统星间链路关键技术研究[D].北京:中国科学院国家空间科学中心, 2016. SHI Liguo. Research on key technologies of inter satellite links for distributed satellites system[D]. Beijing:National Space Science Center, the Chinese Academy of Sciences, 2016. [113] ANANDA M P, BERNSTEIN H, CUNNINGHAM K E, et al. Global positioning system (GPS) autonomous navigation[C]//Proceedings of 1990 IEEE Symposium on Position Location and Navigation. A Decade of Excellence in the Navigation Sciences. Las Vegas, NV, USA:IEEE, 1990:497-508. [114] WANG Haihong, XIE Jun, ZHUANG Jianlou, et al. Performance analysis and progress of inter-satellite-link of BeiDou system[C]//Proceedings of the 30th International Technical Meeting of the Satellite Division of the Institute of Navigation. Portland, OR, USA:Oregon Convention Center, 2017:1178-1185. [115] XU Hongliang, WANG Jinling, ZHAN Xingqun. Autonomous broadcast ephemeris improvement for GNSS using inter-satellite ranging measurements[J]. Advances in Space Research, 2012, 49(6):1034-1044. DOI:10.1016/j.asr.2012.01.001. [116] REN Xia, YANG Yuanxi, ZHU Jun, et al. Orbit determination of the next-generation BeiDou satellites with intersatellite link measurements and a priori orbit constraints[J]. Advances in Space Research, 2017, 60(10):2155-2165. DOI:10.1016/j.asr.2017.08.024. [117] 阮仁桂,冯来平,贾小林.导航卫星星地/星间链路联合定轨中设备时延估计方法[J].测绘学报, 2014, 43(2):137-142, 157. DOI:10.13485/j.cnki.11-2089.2014.0020. RUAN Rengui, FENG Laiping, JIA Xiaolin. Equipment delay estimation for GNSS satellite combined orbit determi-nation with satellite-ground link and inter-satellite link observations[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(2):137-142, 157. DOI:10.13485/j.cnki.11-2089.2014.0020. [118] 冯来平.低轨卫星与星间链路增强的导航卫星精密定轨研究[D].郑州:信息工程大学, 2017. FENG Laiping. Study of precise orbit determination for GNSS enhanced by LEO satellite and inter-satellite ranging[D]. Zhengzhou:Information Engineering University, 2017. [119] ZHANG Rui, TU Rui, ZHANG Pengfei, et al. Orbit determination of BDS-3 satellite based on regional ground tracking station and inter-satellite link observations[J]. Advances in Space Research, 2021, 67(12):4011-4024. DOI:10.1016/j.asr.2021.02.027. [120] PRANGE L, ARNOLD D, DACH R, et al. CODE product series for the IGS-MGEX project[R].[S.l.]:Astronomical Institute, University of Bern, 2020. [121] SELMKE I, DUAN Bingbing, HUGENTOBLER U. Status of the TUM MGEX orbit and clock products[C]//Proceedings of 2018 IGS Workshop. Wuhan:[s.n.], 2018. [122] AGROTIS L, SCHÖNEMANN E, ENDERLE W, et al. The IGS real time service[C]//Proceedings of 2017 GNSS 2017-Kompetenz für die Zukunft. Potsdam, Germany:[s.n.], 2017. [123] LAURICHESSE D, CERRI L, BERTHIAS J P, et al. Real time precise GPS constellation and clocks estimation by means of a Kalman filter[C]//Proceedings of 2013 ION-GNSS. Nashville, TN, USA:Institute of Navigation, 2013:1155-1163. [124] 戴小蕾.基于平方根信息滤波的GNSS导航卫星实时精密定轨理论与方法[D].武汉:武汉大学, 2016. DAI Xiaolei. Real-time precise GNSS satellite orbit determination using the SRIF method:theory and implemencation[D]. Wuhan:Wuhan University, 2016. [125] ZHAO Qile, GUO Jing, WANG Chen, et al. Precise orbit determination for BDS satellites[J]. Satellite Navigation, 2022, 3(1):2. DOI:10.1186/s43020-021-00062-y. [126] SCHULDT T, GOHLKE M, OSWALD M, et al. Optical clock technologies for global navigation satellite systems[J]. GPS Solutions, 2021, 25(3):83. DOI:10.1007/s10291-021-01113-2. [127] GIORGI G, SCHMIDT T D, TRAINOTTI C, et al. Advanced technologies for satellite navigation and geodesy[J]. Advances in Space Research, 2019, 64(6):1256-1273. DOI:10.1016/j.asr.2019.06.010. |
[1] | 杨宇飞, 杨元喜, 陈金平, 唐成盼, 李冲, 郭海荣, 杨建华, 刘金获, 杨斌. 北斗三号星座拟稳钟差测定及其预报[J]. 测绘学报, 2021, 50(12): 1728-1737. |
[2] | 张勤, 燕兴元, 黄观文, 解世超, 曹钰. 北斗卫星天线相位中心改正模型精化及对精密定轨和定位影响分析[J]. 测绘学报, 2020, 49(9): 1101-1111. |
[3] | 刘成, 高为广, 潘军洋, 唐成盼, 胡小工, 王威, 陈颖, 卢鋆, 宿晨庚. 基于北斗星间链路闭环残差检测的星间钟差平差改正[J]. 测绘学报, 2020, 49(9): 1149-1157. |
[4] | 阮仁桂, 贾小林, 朱俊, 呼延宗泊, 冯来平, 李杰. 联合星地与星间Ka伪距的北斗三号卫星一体化定轨和时间同步[J]. 测绘学报, 2020, 49(3): 292-299. |
[5] | 杨宇飞, 杨元喜, 胡小工, 唐成盼, 赵立谦, 徐君毅. 北斗三号卫星两种定轨模式精度比较分析[J]. 测绘学报, 2019, 48(7): 831-839. |
[6] | 阮仁桂, 魏子卿, 贾小林. 星间单程伪距联合监测站数据确定北斗三号卫星轨道和钟差[J]. 测绘学报, 2019, 48(3): 269-275. |
[7] | 苏牡丹, 赵齐乐, 郭靖, 苏醒, 胡志刚, 郭慧君. 接收机端天线相位中心标定及其对北斗导航卫星精密定轨的影响[J]. 测绘学报, 2018, 47(S0): 78-85. |
[8] | 常志巧, 胡小工, 陈刘成, 李晓杰, 祖安然, 唐成盼, 黄华. 北斗高精度长弧历书模型设计[J]. 测绘学报, 2018, 47(3): 298-307. |
[9] | 宋小勇, 毛悦, 冯来平, 贾小林, 姬剑锋. BD卫星星间链路定轨结果及分析[J]. 测绘学报, 2017, 46(5): 547-553. |
[10] | 毛悦, 宋小勇, 贾小林, 阮仁桂. 北斗卫星ECOM光压模型参数选择策略分析[J]. 测绘学报, 2017, 46(11): 1812-1821. |
[11] | 冯来平, 毛悦, 宋小勇, 孙碧娇. 低轨卫星与星间链路增强的北斗卫星联合定轨精度分析[J]. 测绘学报, 2016, 45(S2): 109-115. |
[12] | 乔晶, 陈武. 星载加速度计增强北斗自主定轨性能[J]. 测绘学报, 2016, 45(S2): 116-131. |
[13] | 范曹明, 王胜利, 欧吉坤. GPS/BDS卫星姿态异常对PPP相位缠绕的影响及其改正模型[J]. 测绘学报, 2016, 45(10): 1165-1170. |
[14] | 牛飞. 利用星间链路组合观测量的导航卫星自主完好性监测设计仿真[J]. 测绘学报, 2011, 40(Sup.): 73-79. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||