测绘学报 ›› 2023, Vol. 52 ›› Issue (2): 230-243.doi: 10.11947/j.AGCS.2023.20210472

• 摄影测量学与遥感 • 上一篇    下一篇

面向大视角差的无人机影像序列学习型特征匹配

张永显1, 马国锐1, 崔志祥2, 张志军3   

  1. 1. 武汉大学测绘遥感信息工程国家重点实验室, 湖北 武汉 430079;
    2. 31682部队, 甘肃 兰州 730020;
    3. 中国地质调查局西宁自然资源综合调查中心, 青海 西宁 810000
  • 收稿日期:2021-08-18 修回日期:2022-05-16 发布日期:2023-03-07
  • 通讯作者: 马国锐 E-mail:mgr@whu.edu.cn
  • 作者简介:张永显(1990-),男,博士生,研究方向为多源遥感影像智能化处理。E-mail:zhyx009@whu.edu.cn
  • 基金资助:
    国家重点研发计划(2018YFB1004603);中国地质调查局项目(DD20191016)

Learning feature matching for UAV image sequences with significantly different viewpoints

ZHANG Yongxian1, MA Guorui1, CUI Zhixiang2, ZHANG Zhijun3   

  1. 1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China;
    2. Troops 31682, Lanzhou 730020, China;
    3. Xining Center of Natural Resources Comprehensive Survey, China Geological Survey, Xining 810000, China
  • Received:2021-08-18 Revised:2022-05-16 Published:2023-03-07
  • Supported by:
    The National Key Research and Development Project (No. 2018YFB1004603);China Geological Survey Project (No. DD20191016)

摘要: 针对无人机大视角差影像之间存在仿射变形大、遮挡严重、视角差异显著等问题导致的同名点匹配存在多解和大量误匹配难题,本文提出了一种适用于大视角差影像稳健匹配方法。利用改进的具有双头通信机制的D2-Net卷积神经网络提取倾斜影像的学习型特征,在之后的同名点匹配搜索阶段,为解决唯一匹配点受到较多潜在可行解干扰的问题,设计了一种由粗到精的提纯策略,在稳健匹配同名点对的同时大幅降低匹配开销成本。将HPatches数据集中多组不同场景的影像序列和实地采集的无人机大视角差影像序列作为数据源对提出的方法进行测试,并与具有代表性的基于手工设计的ASIFT方法和基于深度学习的多种方法进行了比较。结果表明,本文方法能够提取稳健的大视角差影像序列仿射不变学习型特征,在正确匹配点数、匹配点正确率、匹配点均方根误差和匹配时间开销方面具有优势。

关键词: 影像匹配, 仿射变换, 深度学习特征, 卷积神经网络, 无人机

Abstract: Aiming at the problems of large affine deformation, serious occlusion, and obvious viewpoint difference, a method of robust matching is proposed to solve the problems of multiple solutions and a number of mismatches in UAV image sequences matching with significantly different viewpoints. First, the improved dual-head communication D2-Net convolutional neural network is used to extract the learning features of the image sequences. In the subsequent matching search stage of the corresponding image points, a coarse-to-fine matching purification strategy is designed to solve the problem that the unique matching point is interfered by many potential feasible points, which achieves the robust matching and greatly reduces matching time cost. The proposed algorithm was tested using multiple sets of sequence images of different scenes in the HPatches dataset and field-collected images with large different viewpoints, and compared with the representative ASIFT method based on the hand-crafted and some methods based on deep learning. The results show that the proposed method can extract robust affine invariant deep learning features, and has advantages in terms of the number of correct matching points, the correct rate of matching points, the RMSE of matching points and the cost of matching time.

Key words: image matching, affine transformation, deep learning feature, convolutional neural network, UAV

中图分类号: